Google Search

WWW   Northwestern   Dunand Group

Home | About Us | Contact Us | Site Map
| Photos | Videos |
| Prof. David Dunand | Dr. Dinc Erdeniz | Dr. James Coakley | Pete Bocchini | Michael Rawlings | Matthew Glazer | Daniel Sauza | Ashley Pazypuente-Ewh | Amelia Plunk | Zilong Wang | Shannon Taylor | Philipp Okle | Group Alumni |
| High Temperature Alloys | Metallic Foams | Cultural Heritage Materials |
| Searchable Literature Database | Journal Articles Sorted by Year of Publication | U.S. Patents |

MSE 435: High Temperature Materials

SYNOPSIS

This course covers the mechanics and microstructure of structural materials for high-temperature applications. The mechanisms of time-dependent deformation and failure at high homologous temperature are treated in a quantitative manner.  Materials used at high temperature (metals, ceramics and their composites) are reviewed, with emphasis on the relationship between microstructure and high-temperature mechanical properties. 
 
 
Week 1                 Introduction, Continuum Approach
         Lattice defects relevant to high temperature deformation        
Week 2                     Dislocation Glide
                              Dislocation Creep                                        
Week 3                     Dislocation Creep
                        Dispersion Strengthening                                    
Week 4                     Diffusional Creep
                      Deformation Mechanism Maps                                
Week 5                     Midterm Exam
                                Superplasticity                                          
Week 6                 High Temperature Fracture
                                     Steels                                                
Week 7                    Nickel-base  Superalloys
                           High Temperature Coatings                               
Week 8                        Intermetallics
                               Refractory Metals                                       
Week 9                          Ceramics 
                                   Composites                                           
Week 10                         Carbon


A. Mechanics and Mechanisms

I. Continuum mechanics
 
1. Test techniques
2. Visco-elastic Behavior
 
II. Lattice Defects
 
1. Vacancies
                                1. Diffusion in metals
                                2. Diffusion in ceramics
2. Grain boundaries
3. Dislocations
                                1. Slip
                                2. Climb
                                3. Orowan equation
 
III. Deformation Mechanisms
 
1. Dislocation glide
                                1. Discrete obstacles
                                2. Diffuse obstacles
2. Dislocation creep
                                1. Glide control
                                2. Climb control
                                3. Effect of alloying
                                4. Power-law break-down
                                5. Harper-Dorn creep
                                6. Microstructure evolution
                                7. Dispersion strengthening
3. Diffusional creep
                                1. Vacancy creep
                                2. Grain-boundary sliding
                                3. Grain-boundary dislocations
                                4. Microstructural effects
4. Deformation mechanism maps
                                1. Steady-state creep
                                2. Isomechanical groups
5. Superplasticity
                                1. Structural superplasticity
                                2. Internal-stress superplasticity
                                3. Fracture
                                4. Superplastic materials
 
IV. High-temperature fracture
 
1. Fracture Mechanism Maps
2. Cavity Nucleation
3. Cavity growth

B. Microstructures and Materials
 
V. Metals
 
1. Iron-based alloys
                1. Low-alloy steels
                2. Martensitic steels
                3. Ferritic steels
                4. Austenitic steels
                5. Iron-nickel superalloys
2. Nickel- and cobalt-base superalloys
                1. Historical developments
                2. Microstructure
                3. Properties
                4. Processing
                5. Coatings
3. Intermetallic alloys
                1. Nickel aluminides
                2. Iron aluminides
                3. Titanium aluminides
                4. Other aluminides
                5. Silicides
4. Refractory alloys
                1. Chromium
                2. Niobium
                3. Molybdenum
                4. Tantalum
                5. Tungsten
                6. Rhenium
 
VI. Ceramics
 
1. Bulk ceramics
                1. Mechanical properties
                2. Environmental effects
                3. Toughening
                4. Zirconia
                5. Silicon carbide
                6. Silicon nitride
                7. High-temperature applications
2. Ceramic fibers and composites
               1. Processing
                2. Properties
                3. Ceramic matrix composites
3. Carbon and carbon composites
                1. Carbon
                2. Carbon Fibers
                3. Processing
                4. Properties and Applications

 

 

June 9, 2008