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Abstract—We demonstrate how first-principles total energy calculations may be used to elucidate both the
crystal structures and formation enthalpies of complex precipitates in multicomponent Al alloys. For the
precipitates,S(Al–Cu–Mg), h� (Al–Zn–Mg), andQ(Al–Cu–Mg–Si), energetics were computed for each of
the models of the crystal structures available in the literature allowing a critical assessment of the validity
of the models. In all three systems, energetics were also calculated for solid solution phases as well as other
key phases (e.g., equilibrium phases, GP zones) in each precipitation sequence. For both theS andh� phases,
we find that recently proposed structures (based on electron microscopy) produce unreasonably high energies,
and thus we suggest that these models should be re-evaluated. However, for all three precipitates, we find
that structures based on X-ray diffraction refinements provide both reasonable energetics and structural para-
meters, and therefore the first-principles results lend support to these structural refinements. Further, we
predict energy-lowering site occupations and stoichiometries of the precipitate phases, where experimental
information is incomplete. This work suggests that first-principles total energy calculations can be used in
the future as a complementary technique with diffraction or microscopy for studying precipitate structures
and stabilities. 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Heat treatment of aluminum alloys is often employed
in practice in order to strengthen the alloy via precipi-
tation hardening. Precipitation microstructures
improve the yield strength of the alloy because the
precipitates act to impede dislocation motion through
the material. The magnitude of the strengthening
effect is, naturally, dependent on the microstructural
morphology of the precipitates, which in turn is gov-
erned by the interfacial and strain energies of the
precipitate/matrix system. These interfacial and strain
energies are sensitive to the nature of the atomic-scale
crystal structure of the precipitate phase, the matrix
phase, and the interface between the two. Hence, a
large amount of effort has gone into understanding
the crystal structure of precipitate phases in alumi-
num-based alloys [1, 2].

However, despite decades of study, there are sev-
eral commonly-occurring precipitate phases in multi-
component (ternary, quaternary, and higher order)
aluminum alloys whose crystal structures are still the
subject of significant controversy. In some cases, even
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the stoichiometry of the precipitate phase is not estab-
lished. Notable among these controversial cases are:

1. the S (and/or S�) phase occurring in Al–Cu–Mg
alloys;

2. the h� phase which occurs in Al–Zn–Mg alloys
(with relatively low levels of Mg); and

3. the “ubiquitous”Q phase which occurs in a wide
variety of quaternary Al–Cu–Mg–Si alloys.

In many of these alloys, the nature and structure
of the Guinier–Preston (GP) zones formed in the early
stages of aging are also a matter of debate.

The study of these multicomponent precipitate
phases goes back more than 50 years, using tech-
niques such as X-ray diffraction (XRD), electron
microscopy, electron diffraction, and more recently,
high-resolution electron microscopy (HREM), and
both one- and three-dimensional atom probe tech-
niques. The determination of precipitate crystal struc-
ture by diffraction experiments can be complicated by
several factors: weak diffraction spots above the Al
background scattering; significant overlap between
precipitate and Al peaks; and low contrast between
neighboring elements, such as Mg, Al, and Si.
Despite the long history of this subject, the field is
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still quite active, as evidenced by many recent papers
(within the past 5 years) addressing the crystal struc-
tures and precipitation sequences in these systems:
S/S� [3–13] h�, [14–20] and Q [21–25]. The crystal
structure of these three precipitate phases is the sub-
ject of the current paper. We also investigate GP zone
orderings in Al–Cu–Mg and Al–Zn–Mg.

We show here how an existing technique may be
brought to bear in a new way on problems of precipi-
tate structure determination: first-principles total
energy calculations based on density functional
theory. While the XRD and HREM experimental
efforts yield structural and chemical information,
first-principles atomistic calculations give structural,
chemical, and energetic information. Energetic infor-
mation is not typically utilized in attempting to ascer-
tain crystal structures, but it is reasonable to assume
that the energies of precipitate phases are bounded
above and below by the parent phase from which they
transform, and the product phase into which they
transform, respectively. These bounds place restric-
tions on the allowed energies of precipitate phases,
and as we show here, they may be used to exclude
many proposed structural models as “energetically
unreasonable” .

State-of-the-art first-principles calculations are
particularly useful for obtaining the energetics of
these precipitate phases for several reasons: The accu-
racy of relative energetics (e.g., the energy differ-
ences between two solid phases, as in a formation or
mixing enthalpy) is quite high. As we show here, a
comparison between first-principles and experimen-
tally assessed CALPHAD (CALculation of PHAse
Diagrams) data for Al-rich intermetallics yields a
typical accuracy to within 2 kJ/mol for formation
enthalpies. Also, first-principles methods are gener-
ally applicable to any elements in the periodic table
and are not constrained by equilibrium thermodyn-
amics. That is, these methods should be just as accur-
ate for the energies of metastable states as they are
for stable states. They are unbiased towards any parti-
cular structural model, making them a useful predic-
tive tool for critically assessing various proposed pre-
cipitate structures.

In this paper, we apply arguments based on
T = 0K energetics to the crystal structures of precipi-
tates. However, precipitation is inherently a finite-
temperature, kinetic process. So, the zero-temperature
energetics do not yield a complete picture of the pre-
cipitation process, and hence one might wonder about
the applicability of such an approach. As we show
here, the energetic separation between various models
of precipitate structures is very large (�10 kJ/mol),
making several proposed crystal structure models
unreasonably high in energy (e.g., higher in energy
than either the solid solution phase or the GP zones
phases from which the precipitates nucleate). Tem-
perature-dependent effects (e.g., configurational and
vibrational entropy) certainly will quantitatively
effect the phase stability of these precipitates; how-

ever, entropic contributions are not likely to be large
enough to qualitatively reverse these types of large
energetic differences†.

2. METHODOLOGY

2.1. First-principles method

The first-principles calculations described utilize
the plane wave pseudopotential method, as
implemented in the highly efficient Vienna ab initio
simulation package (VASP) [27–30], using ultrasoft
pseudopotentials [31, 32]. In the vast majority of cal-
culations reported here, the local density approxi-
mation (LDA) was employed, with the exchange-cor-
relation functional of Ceperley and Alder [33, 34].
For a few calculations involving magnetic 3d
elements Cr, Mn, Fe, Co, and Ni, spin-polarized cal-
culations were performed using both the LDA as well
as the generalized gradient approximation (GGA) of
Perdew [35]. Tests were performed for the early tran-
sition elements, Sc and Ti, treating 3p electrons as
valence versus core, with negligible differences
between the two. All structures were fully relaxed
with respect to volume as well as all cell-internal
and -external coordinates. Convergence tests indi-
cated that 237 eV (=17.5 Ry) was a sufficient cutoff
to achieve highly accurate energy differences. Exten-
sive tests of k-point sampling using both Monkhorst–
Pack [36] and equivalent [37] k-point meshes (using
from 2×2×2 to 16×16×16 grids) indicated that total
energy differences were converged to well within
�1 kJ/mol.

2.2. Assessing the accuracy of first-principles forma-
tion enthalpies

Since we are attempting to critically evaluate vari-
ous experimental measurements of crystal structures
using a first-principles total energy method, assessing
the accuracy of the computational approach is crucial,
particularly in regard to formation enthalpies. The
equilibrium formation enthalpy, �Heq(ApBq), for a
binary compound ApBq is given by the energy of
ApBq relative to the composition-weighted average of
the energies of the pure constituents each in their
equilibrium crystal structures:

�Heq(ApBq) � E(ApBq)�[xAEeq(A) � xBEeq(B)]
(1)

where E(ApBq), Eeq(A) and Eeq(B) are the energies (per
atom) of the compound ApBq and constituents, A and

† A case has recently been found [26] in Al2Cu where a
very large and unexpected vibrational entropy can reverse
a relatively modest (about 1 kJ/mol) energetic difference
between two precipitate phases (q and q�). However, for the
large energy differences found here, (often 10 kJ/mol) it is
unlikely that entropic effects could have such an effect.
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B, respectively, each relaxed to their equilibrium
(zero-pressure) geometries. xA = p/(p + q) and
xB = q/(p + q) are the concentrations of A and B,
respectively. Analogous expressions apply for ternary
and higher-order multicomponent compounds. We
have computed the formation enthalpies of many Al-
rich Al–M binary intermetallics in their equilibrium
structures, for solutes across the 3d transition metal
series M=Sc–Zn and for several elements commonly
found in Al alloys, M=Mg, Si, and Sr†. Although
there have been previous studies addressing the accu-
racy of first-principles calculations for describing for-
mation enthalpies of intermetallics [38, 39] we wish
to perform a systematic comparison for a wide range
of aluminum-rich systems using a single method for
all calculations. The calculated results are shown in
Fig. 1. We chose these equilibrium intermetallics as
a test case because their enthalpies of formation have
been recently assessed and systematically compiled
via a CALPHAD-type approach, whereby thermodyn-
amic functions are fitted to experimental data, such
as enthalpies, chemical potentials, and phase diagram
information. This assessment has been detailed in the
report of the COST 507 database [40]. These assessed
values for the formation enthalpies are also shown in
Fig. 1. As one can see, the agreement between the

Fig. 1. Comparison of first-principles calculated and exper-
imentally assessed (COST 507—Ref. [40]) formation
enthalpies of Al-rich equilibrium compounds. The stoichi-
ometry, Strukturbericht designation (if one exists), and Pearson
symbol for the phases shown are: Al3Sc (L12, cP4); Al3Ti
(D022, tI8); Al45V7 (mC104); Al45Cr7 (mC104); Al6Mn (D2h,
oC28); Al13Fe4 (mC102); Al9Co2 (D8d, mP22); Al3Ni (D020,
oP16); Al2Cu (C16, tI12); Zn (hcp, A3, hP2); Al12Mg17 (A12,

cI58); and Al4Sr (D13, tI10).

† The pure element energies of equation 1 are calculated
in their equilibrium, low-temperature structures with the
exception of Cr and Mn, which have complex magnetic and
structural ground states. Ferromagnetic bcc Cr and nonmag-
netic fcc Mn were found to possess the lowest energies out
of the simple bcc/fcc and non-/ferro-magnetic combinations,
and hence these energies are used in evaluating the forma-
tion enthalpies. Also, as noted in the main text, the LDA
(incorrectly) predicts nonmagnetic fcc Fe as a ground state,
which was used as the pure element energy in the LDA Al–
Fe calculations.

first-principles calculated formation enthalpies and
the COST 507 values is excellent. Only the calculated
Al3Ti energy differs from the experimental value by
as much as 4 kJ/mol, and all of the other calculated
values are within 2 kJ/mol. Additionally, the errors
appear to be systematic, as all of the first-principles
calculated formation enthalpies are lower than the
COST 507 values. One should note that this set of
structures includes a wide, non-trivial range of stoi-
chiometries, alloying elements, local coordinations,
symmetries, and unit cell sizes (up to 52 atoms per
unit cell). Thus, the excellent comparison between
VASP calculations and the COST 507 database con-
clusively demonstrates that first-principles calcu-
lations of the type presented here are of the high accu-
racy necessary to critically assess the crystal
structures of complex precipitate phases.

For the magnetic elements M=Cr–Ni, spin polar-
ized calculations were performed within both the
LDA as well as the GGA for each of the constituents
M, as well as the Al–M compounds in both the
Al9Co2 and Al6Mn structures. These GGA calcu-
lations were undertaken not so much because it was
expected that the LDA versus GGA would make a
significant difference for the Al-rich intermetallics,
but rather since it is known that the magnetic pure
element energy of equation (1) can by strongly affec-
ted by the choice of exchange correlation functional.
Negligible differences were found between LDA and
GGA results, except for the Al–Fe system. For the
equilibrium Al13Fe4 phase, the LDA (GGA) forma-
tion enthalpy was found to be �36.0 (�30.4) kJ/mol,
whereas the COST 507 database yields �28.6 kJ/mol.
The somewhat larger disparity between LDA-calcu-
lated and experimental formation enthalpies in the
Al–Fe system has also been found by Watson and
Weinert [38]. We show here that use of the GGA
largely removes this discrepancy for the Al13Fe4 com-
pound. This sensitivity in the case of Fe to exchange-
correlation functional is not surprising, since the LDA
is known to produce the wrong magnetic and struc-
tural ground state (nonmagnetic fcc Fe), whereas
GGA correctly gives ferromagnetic bcc Fe as the low-
est-energy phase [41]. Consequently, all Al–M results
shown in Fig. 1 are for the LDA, except Al–Fe which
is GGA. All other results in this paper (none of which
contain Fe) are LDA calculations, except where
otherwise indicated.

2.3. Estimating multicomponent solution energies

In addition to the energetics of precipitate phases
and equilibrium ordered compounds, it is also useful
to describe the energetics of the “parent” solid sol-
ution phases. However, describing the energetics of
solid solutions from first-principles is problematic
since these calculations are currently limited to rela-
tively small system sizes. This problem can be over-
come by using the “special quasi-random structure”
(SQS) approach [42], an efficient means to calculate
random alloy properties within a small-unit-cell
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approach. In this paper, we use fully-relaxed, binary
16-atom SQSs (described in Appendix A) with stoi-
chiometries A3B and AB. The calculated formation
enthalpies of the SQSs are given in Table 1. However,
the SQS methodology is developed for binary sys-
tems, whereas we wish to ascertain the energetics of
multicomponent solid solutions. For the extrapolation
of binary energetics to multicomponent systems, we
use a simple quadratic functional form for the compo-
sition dependence of the mixing energy:

�Hfcc
SS � �

I�J

aIJxIxJ (2)

where xI is the concentration of species I
(I = A, B, C,…) and aIJ are constants. �Hfcc

SS is the
“ fcc-based” formation enthalpy of the solid solution
phase. This quantity is a formation enthalpy, anal-
ogous to equation (1), except that the energy of the
solid solution is evaluated with respect to the pure
constituents in the fcc structure, rather than in their
respective equilibrium structures. To obtain the for-
mation enthalpy with respect to the equilibrium con-
stituents, �Heq, from the “ fcc-based” formation
enthalpy, �Hfcc, one simply has to add the compo-
sition-weighted energy required to promote each of
the constituents from the equilibrium structure to the
fcc structure:

�Heq � �Hfcc � �
I

xI[Efcc(I)�Eeq(I)]. (3)

Table 1 gives the calculated values of �Heq, �Hfcc,
and Efcc�Eeq for all alloying elements and relevant

Table 1. First-principles (VASP) LDA-calculated formation enthalpies of SQSsa

System Stoichiometry �Heq
SQS �Hfcc

SQS Efcc�Eeq

Al–Cu AlCu �9.6 �9.6
Al3Cu �5.1 �5.1 (�5.7)

Al–Zn AlZn +2.4 +1.1
Al3Zn +1.8 +1.2 (+1.6)

Al–Mg AlMg +2.6 +1.9
Al3Mg +1.4 +1.0 (+0.7)

Al–Si AlSi +15.7 �7.0
Al3Si +8.6 �2.7 (�2.9)

Cu–Mg CuMg �1.9 �2.6
Mg–Zn MgZn �4.1 �6.1
Cu–Si CuSi +13.5 �9.2
Mg–Si MgSi +7.0 �16.4
Al 0.0
Cu 0.0
Zn 2.6
Mg 1.4
Si 45.4

a All energies are in kJ/mol. In all calculations, 16-atom SQSs and k-points equivalent to a 16×16×16 mesh were employed. (The description
of the SQS structures are given in Appendix A.) The formation enthalpy with respect to the pure constituents in their equilibrium structures,
�Heq

SQS is given, as is the formation enthalpy with respect to the pure constituents in the fcc structure, �Hfcc
SQS. In a few cases, GGA-calculated

energies are shown (in parentheses) for comparison with the LDA results. Also, given is the energy required to promote the pure constituents from
their equilibrium structures to the fcc structure.

binary combinations for the Al–Cu–Mg, Al–Zn–Mg,
and Al–Cu–Mg–Si systems considered here.

Equation (2) is a simple, quadratic approximation
to the actual composition-dependence of the solid sol-
ution energetics. We can use this functional form to
interpolate the multicomponent energetics from a
weighted average of binary solution phases. This
interpolation is accomplished by fitting the constants
aIJ to SQS calculations of the corresponding binary
random alloy energies. However, there is not a unique
relationship between aIJ and SQS energetics. For
instance, one could rewrite equation (2) in terms of
the equiatomic formation enthalpies by noting that
aIJ = 4�Hfcc(IJ). Alternatively, one could rewrite the
expression in terms of binary energetics at other com-
positions, for example, aIJ = [16/3]�Hfcc(I3J). If the
system of interest were truly described by a functional
form like equation (2), either of these identifications
would be equivalent. However, real alloy systems do
not behave ideally, and first-principles calculations
are not constrained by expressions such as equation
(2). Thus, by fitting the coefficients aIJ to various
binary SQS energetics of various stoichiometries, we
can test the robustness of such a simple description.
In general, one would expect that fitting aIJ with
binary data as close as possible (in composition
space) to the ternary composition of interest would
yield the most accurate prediction.

As an example, consider the formation enthalpy of
a solid solution with stoichiometry A2BC. One could
write this as:

�Hfcc
SS(A2BC) �

1
2

�Hfcc
SQS(AB) (4)

�
1
2

�Hfcc
SQS(AC) �

1
4

�Hfcc
SQS(BC).
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Alternately, one could also write

�Hfcc
SS(A2BC) �

2
3
�Hfcc

SQS(A3B) (5)

�
2
3

�Hfcc
SQS(A3C) �

1
4

�Hfcc
SQS(BC)

By comparing the two predictions of equations (4)
and (5), one can get an estimate not only of
�Hfcc

SS(A2BC), but also of the error induced by
assuming the solid solution form of equation (2).

The Al alloy solid solution phases which give rise
to precipitates are typically not concentrated compo-
sitions, but rather dilute. Equation (2) gives a simple
way to estimate the dilute heats of mixing:

�Hfcc
dilute(ABx) � �d�Hfcc

dx �
x→0

. (6)

Thus, for instance, the dilute heat of mixing of a ter-
nary alloy with equal parts B and C can be written

�Hfcc
dilute[A(BC)x] �

1
2

�Hfcc
dilute(ABx) (7)

�
1
2

�Hfcc
dilute(ACx)

where

�Hfcc
dilute(ABx) �

16
3

�Hfcc
SQS(A3B). (8)

It is worth emphasizing that the ternary energetics
obtained in this way from binary calculations are sim-
ply estimates of the multicomponent solid solution
phases, and should not be considered to have the
same sort of accuracy as for ordered compounds, as
in Fig. 1. A more complete and systematic description
of binary Al alloy solid solutions from SQS calcu-
lations is given in Ref. [43].

3. STRUCTURE AND FORMATION ENTHALPIES OF
Al–Cu–Mg PHASES: S/S� PHASES, GPB ZONES, AND

SOLID SOLUTION

The precipitation sequence formed upon heat treat-
ing Al–Cu–Mg has been studied for decades [3, 5–
13, 44–49]. Al–Cu–Mg alloys have historically for-
med the basis of many alloys used in aerospace and
other applications, and have been suggested as an
alternative to 6xxx series alloys for use in automotive
body panels (see, e.g., Refs. [6, 7]) In alloys close
to the pseudo-binary Al–Al2CuMg compositions, the
sequence is [44]:

Solid solution→GPB zones→S

In the early stages of aging, coherent precipitates
form [called Guinier–Preston–Bagaryastskii (GPB)
zones], although the precise structure of these zones
is not known [44, 45]. There has been quite a bit of
recent discussion in the literature about the initial
stages of decomposition which precede the formation
of GPB zones, and the origins of the age hardening
associated with these stages [8–12, 3, 13]. As for the
latter stages of precipitation, Bagaryastskii reported
[45] two intermediate phases S� and S� that are
slightly distorted versions of the equilibrium
Al2CuMg S phase, with different matrix-precipitate
coherence. Many authors have noted that only slight
differences in lattice parameters differentiate the S�
phase from the equilibrium phase S, but otherwise
their structures are the same. For the purposes of this
paper, we do not distinguish between S�, S�, and S,
but rather consider only the equilibrium S phase.

3.1. S phase

Several structural models have been proposed for
the Al2CuMg S phase† [2, 5, 46–48]. By XRD, Perlitz
and Westgren (PW) [46] found a model for S which
is centered orthorhombic with 16 atoms per conven-
tional unit cell. Mondolfo [2] suggested an analogous
model to PW with slightly different lattice para-
meters. Very recently, Radmilovic, Kilaas, Dahmen,
and Shiflet (RKDS) [5] have re-evaluated the struc-
ture of S phase precipitates using quantitative HREM.
These authors found that of the existing models for
S, only the PW model gave results consistent with
their HREM images and electron diffraction results.
However, by comparing measured and simulated
HREM images, RKDS proposed yet another model
for Al2CuMg (S), which is identical to the PW model,
except that Cu and Mg atoms are interchanged.

We have calculated the enthalpies of formation of
both the PW [46] and RKDS [5] models of Al2CuMg
(S). The results are given in Table 2. The first-prin-
ciples calculation using the PW model yields a
reasonable (negative) formation enthalpy, in good
agreement with the measured formation enthalpy of
Notin et al. [49] However, upon interchange of Cu
and Mg atoms (the RKDS model), the energy is
raised by a large amount, resulting in a positive for-
mation enthalpy. This suggests that the RKDS model
for S is unstable with respect to phase separation into
the constituent metals, Al, Cu, and Mg. Thus, the
first-principles results of Table 2 support the validity

† The structural models of S� given by Cuisiat et al. [48]
and that of S� from Yan et al. [47], yield an unexpected
precipitate density which is only about half that of the
aluminum matrix. However, recent XRD work [4] under-
taken to clarify the controversy between the various models
of S, S�, and S� supported the models of Perlitz and
Westgren [46] and Mondolfo [2]. Hence, we do not consider
the models of Cuisiat et al. or Yan et al. here.
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Table 2. First-principles calculated (VASP) formation enthalpies �Heq

(kJ/mol) of Al2CuMg phases: solid solution, GPB zones, and S/S� [using
both the models of Perlitz and Westgrin (PW) [46] and Radmilovic et
al. (RKDS) [5]]. Also shown is the measured formation enthalpy of S

Phase VASP Experiment

Al2CuMg solid solution ��4.0±1
GPB zones (Al1Mg1Al1Cu1 [100] �9.1
superlattice)
Al2CuMg S (PW model) �19.4
Al2CuMg S (RKDS model) +16.4
Al2CuMg S �15.8 [49]

of the XRD-derived PW model, and suggest that the
HREM-derived RKDS model should be re-evaluated.

Table 3 gives the calculated structural parameters
of the S phase, compared with the measured values
of Perlitz and Westgren. The lattice constants are in
reasonable agreement with experiment, and the cell-
internal positions are in excellent agreement with
experiment, as is typical in first-principles calcu-
lations. This agreement further suggests that the PW
model is correct. On the other hand, the RKDS model
results in extremely large distortions from these struc-
tural positions. Thus, calculations using the proposed
Cu/Mg interchange in the RKDS model yield both
energetic and structural information that is inconsist-
ent with experimental observations.

3.2. GPB zones

In order to further elucidate the energetics of
decomposition in the Al–Cu–Mg system, we next turn
to the coherent GPB zones. Estimating the energetics
of GPB zones is not straightforward, since the struc-
ture of these zones is not known. Recently, first-prin-
ciples calculations were used to evaluate the structure
and equilibrium shape of GP zones in binary Al–Cu
alloys [50, 51]. These calculations were performed by
mapping energetics of several fcc-based Al–Cu con-
figurations along with coherency strain energies onto
a mixed-space cluster expansion, which was sub-
sequently used in a Monte Carlo approach to predict
large-scale (250 000-atom) coherent alloy morpho-
logies. By using such an approach, one can predict

Table 3. Comparison of first-principles calculated (VASP) and experi-
mental structural properties of S-Al2CuMg using the model of Perlitz

and Westgren [46]a

Property VASP Experiment [46]

a 3.93 4.00–4.03
b 9.12 9.23–9.30
c 6.99 7.08–7.18
V 250.3 263.6–265.7
(y,z)Al (0.356, 0.055) (0.356, 0.056)
(y,z)Cu (0.780, 0.250) (0.778, 0.250)
(y,z)Mg (0.066, 0.250) (0.072, 0.250)

a Lattice constants (a, b, c) are in Å, V is the unit cell volume (in
Å3), and (x, z)i are the cell-internal positions for atom i.

the energy-minimizing morphologies of coherent pre-
cipitates, whether or not the precipitate structure is
known experimentally. However, this type of mixed-
space cluster expansion approach has not yet been
extended to ternary systems. Therefore, we instead
estimate the energetics of coherent Al2CuMg con-
figurations more directly by performing first-prin-
ciples calculations for a wide variety of fcc-based
superlattices: Al2Cu1Mg1 and Al1Mg1Al1Cu1 each
stacked along [100], [111], [110], [210], [311], as
well as an L12-based Al2CuMg ternary structure.
From these 11 fcc-based configurations, we find a
clear energetic preference for the Al1Mg1Al1Cu1

superlattice along [100] (structure shown in Fig. 2)
with a formation enthalpy of �H = �9.1 kJ/mol. (The
range of formation enthalpies for these structures was
�9.1 to +0.6 kJ/mol with the second-lowest energy
fcc-based structure, Al2Cu1Mg1 along [100], having a
formation enthalpy of �4.6 kJ/mol). While this sam-
pling of 11 fcc-based configurations is by no means
a full ternary “ground state search” [52] of all poss-
ible fcc-based states, it does give an indication of the
possible preferred stacking sequence of the GPB
zones as well as an estimate of their energetics. The
energy of the Al1Mg1Al1Cu1 [100] superlattice is
given in Table 2.

The structure of the low-energy Al1Mg1Al1Cu1

superlattice is related to a binary Al1Al1Al1Cu1 [100]
superlattice with one of the Al planes replaced by Mg.
The binary and ternary versions of this superlattice
are shown in Fig. 2. Recent first-principles calcu-
lations [50] have predicted that this binary
Al1Al1Al1Cu1 [100] superlattice corresponds to a
metastable Al3Cu phase which should appear in the
coherent Al–Cu phase diagram (i.e., under the con-
straint of considering only coherent, fcc-based
configurations). The two types of GP zones (GP1 and
GP2) in Al–Cu both correspond to precipitation of
this Al3Cu phase with a size-dependent transition in
the equilibrium shape from GP1 zones at small pre-
cipitate sizes to GP2 at ca 100–150 Å [50]. In Al–
Cu–Mg alloys, there are reports of two types of GPB

Fig. 2. Low-energy coherent configurations in the Al–Cu and
Al–Cu–Mg systems found by first-principles calculations.
Shown is the Al1Al1Al1Cu1 [100] superlattice, predicted to be
a “coherent” ground state in Al–Cu (see Ref. [50]) and the low-

energy Al1Mg1Al1Cu1 [100] superlattice found here.
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zones (often called GPB and GPB2), in analogy to
the GP1/GP2 zones in binary Al–Cu [44]. Addition-
ally, there are suggestions that the GPB zones corre-
spond to monolayers of solute atoms on [100] planes
[3], and that GPB2 zones are a three-dimensional
(possibly ordered) version of GPB containing both Cu
and Mg [44]. (Other authors have suggested that the
GPB zones correspond to [210] planes of solute
atoms [2, 45]. Our calculations include the
Al2Cu1Mg1 [210] superlattice, which corresponds to
the Bagaryastskii model of S�. We find that this super-
lattice is much higher in energy than the [100]
superlattices.) In analogy with the proposed expla-
nation for GP1/GP2 in Al–Cu [50], it is possible that
the both the GPB and GPB2 zones are due to a single
phase in the coherent Al–Cu–Mg phase diagram, with
the GPB zones corresponding to monolayers due to
the GPB/matrix interfacial energy, and GPB2 zones
develop an ordering along [100], like the structure
shown in Fig. 2. This explanation is highly speculat-
ive, since we have only considered a limited number
of possible configurations, although a more complete
first-principles investigation of the ternary Al–Cu–Mg
coherent phase stability (analogous to that of Ref.
[50] for Al–Cu) would be interesting.

3.3. Al–Cu–Mg solid solution

The supersaturated solid solution phase gives rise
to the precipitate phases in the first place. The Al–
Cu–Mg alloys in which precipitation is observed con-
tain relatively dilute amounts of Cu and Mg (a few
atomic percent or less); however, each of the other
phases considered in this system was at Al2CuMg
stoichiometry. For a consistent comparison with these
phases, we have estimated the energy of an Al2CuMg
solid solution phase: the solid solution energetics
were estimated using a ternary solution model in con-
junction with binary SQS calculations, as explained
in Section 2.3. We used the Al–Cu, Al–Mg, and Cu–
Mg SQS energetics given in Table 1. Using the equia-
tomic SQSs and equation (4), we find
�H(Al2CuMg) = �4.2 kJ/mol. Alternatively, using
the Al3Cu and Al3Mg SQSs along with equation (5)
gives �H(Al2CuMg) = �3.0 kJ/mol. We can also
estimate the dilute heat of mixing for the quasi-binary
Al–Al2CuMg using equations (7) and (8). We find
�Heq

dilute[Al(CuMg)x] = �10.2 kJ/mol of solute atoms.
Linearly extrapolating this to Al2CuMg composition
yields �H(Al2CuMg) = �5.1 kJ/mol. Thus, from
these three values of �H(Al2CuMg) we conclude that
the errors inherent in this sort of method yield
�H(Al2CuMg)��4.0±1 kJ/mol, which is the value we
list in Table 2.

From the solid solution, GPB, and S-phase ener-
getics in Table 2, one can see that the general
sequence of the precipitation in these alloys is cor-
rectly preserved in the energetics of Al2CuMg
(provided that the PW model is adopted for the S
phase): �H(Solid solution)��H(GPB)��H(S).

4. Al–Mg–Zn: h, h� PHASES, GP ZONES, AND SOLID
SOLUTION

Additions of Mg and Zn to Al form the basis of
many 7xxx series high-strength, heat treatable alloys.
Consequently, the precipitation sequence in Al–Zn–
Mg alloys has been the subject of much interest [1,
2, 20, 16, 15, 17–19, 53]. For relatively high Zn:Mg
ratios, this sequence (see the recent review in Ref.
[20]) is:

Solid solution→GP zones→h�→h.

Upon aging, the solid solution gives way to (two
types of) GP zones, then to a semicoherent metastable
phase h�, and finally to the equilibrium MgZn2 (h)
phase. If the Zn:Mg ratio is too high, another equilib-
rium phase, Mg2Zn11, can also appear.

4.1. Equilibrium MgZn2 (h) and Mg2Zn11 phases

Since the crystal structures of the h phase and
Mg2Zn11 are unambiguously known, we begin with
calculations of these phases. Table 4 shows the calcu-
lated and observed structural parameters of the
MgZn2 h phase. The h phase is hexagonal, with space
group P63/mmc and 12 atoms per unit cell. Although
the agreement between theory and experiment is
good, we note that the lattice parameters have a �3–
4% error relative to experiment, larger than is typical
from first-principles methods. The error in lattice con-
stant for this Zn-rich compound is somewhat
expected however, since it is known that LDA calcu-
lations of the lattice parameter of hcp-Zn show a large
error (e.g., �3% in Ref. [54]). However, the calcu-
lated relative structural properties of MgZn2, such as
the c/a ratio of h, or the fractional cell-internal pos-
itions are in excellent agreement with experimental
observations. The calculated formation enthalpy of h
is within 4 kJ/mol of the COST 507 database [40],
and just as in Fig. 1, the first-principles value is more
negative than the assessed value. We also computed
the energetics and structural properties of the Zn-rich
equilibrium compound, Mg2Zn11 (not shown in Table
4). This compound is cubic with space group Pm3̄

Table 4. Comparison of first-principles calculated (VASP) and experi-
mental structural and energetic properties of h-MgZn2

a

Property VASP Experiment [64]

a 5.04 5.22
c 8.28 8.57
c/a 1.64 1.64
V 182.4 202.2
(x, y, z)Mg (0.333, 0.667, 0.062) (0.333, 0.667, 0.063)
(x, y, z)Zn1 (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
(x, y, z)Zn2 (0.831, 0.661, 0.250) (0.830, 0.661, 0.250)
�Heq �15.6 �11.8 (Ref. [49])

a Lattice constants (a, b, c) are in Å, V is the unit cell volume (in
Å3), (x, z)i are the cell-internal positions for atom i, and �Heq is the
formation enthalpy, in kJ/mol.
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and 39 atoms per unit cell. The calculated formation
enthalpy of this phase, �8.2 kJ/mol, is also a few
kJ/mol lower than the COST 507 database value,
�5.7 kJ/mol.

4.2. h� phase

The high strength of Al–Zn–Mg alloys and the pro-
nounced hardening response to heat treatment is gen-
erally associated with the h� phase [20]. Hence, this is
a well-studied but still controversial metastable phase.
Significant disagreements exist regarding the crystal
structure and even composition of this phase: h� is
commonly assumed to have the composition MgZn2,
in analogy with the equilibrium h phase. Recent
three-dimensional atom probe investigations of h�
have found Zn:Mg ratios varying from 1.2 to 1.4,
depending on the composition of the alloy [16]. How-
ever, structural models proposed [55, 14, 56] for the
h� phase all contain significantly higher Zn:Mg ratios
than this, with some ratios higher than that of MgZn2.
Also, some investigations find evidence for Al in the
structure of this phase [14, 55].

There exist several models of the crystal structure
of h�: in an early model, Gjonnes and Simensen [56]
proposed an orthorhombic structure of h� with stoi-
chiometry MgZn2. However, it has subsequently
become accepted that h� is hexagonal with
a = 4.96 Å and c = 14.02 Å, and is structurally
related to the equilibrium h phase. Using XRD of sin-
gle crystals, Auld and Cousland [55] deduced a struc-
tural model of h� with an approximate composition
Mg4Zn11Al. Although this model was challenged by
the XRD work of Regnier et al. [57], Auld and Cous-
land subsequently responded to this criticism [58] and
maintained that their model was correct. Recently, Li
et al. [14] have investigated h� precipitates by means
of HREM, and have found a structural model with
stoichiometry Mg2Zn5�xAl2+x, which is distinct from
either that of Gjonnes and Simensen [56] or Auld and
Cousland [55]. We have performed first-principles
calculations of the three distinct models of h� pro-
posed by Gjonnes and Simensen [56], Auld and
Cousland [55] and Li et al. [14]. The results are
shown in Fig. 3.

4.2.1. Gjonnes and Simensen model. The orthor-
hombic model of Gjonnes and Simensen contains
complete crystal structure information with all sites
fully occupied. The calculated energy for this model
is quite high and even slightly positive, indicating an
instability with respect to phase separation. Since the
Al–Zn–Mg system possesses a solid solution forma-
tion enthalpy which is positive, it is conceivable that
the h� precipitate phase could have a positive forma-
tion enthalpy and still be lower in energy than the
solid solution. However, since h� is thought to be
structurally related to the equilibrium h phase (which
has a strong negative formation enthalpy), we con-
sider it extremely unlikely that h� has a positive for-
mation enthalpy, and therefore we assert that the first-

Fig. 3. First-principles calculated energetics in the Zn-rich cor-
ner of the Al–Zn–Mg system. Shown are formation enthalpies
of the equilibrium phases [MgZn2 (h) and Mg2Zn11], a simple
model of the energetics of the GP zones and dilute solid sol-
utions, and several models (with varying site occupations) of
the structure of h�: Gjonnes et al. [56], Li et al. [14], and Auld
et al. [55]. To compare energetics of structures with varying
Al content, but fixed Mg/Zn ratio, all energies are given in
terms of kJ/mol of solute atoms. The model of Auld et al.
clearly provides the most reasonable energetics, between that

of the GP zones and the equilibrium phases.

principles results do not support the model of Gjonnes
and Simensen.

4.2.2. Li et al. model. For the structural refine-
ments given by both Li et al. and Auld and Cousland,
some sites were given either partial or mixed occu-
pations. Therefore, we investigate several different
occupations of atoms in each of these sites in order
to fully assess the energetics of these structural mod-
els. The structural model of Li et al. [14] is P6̄ and
contains eight symmetry-inequivalent sites: two each
with occupation by Mg, Zn, and Al, and two others
which can be occupied either by Zn or Al. These lat-
ter two sites are, in the notation of Ref. [14], Zn3 and
Zn5 sites (Wyckoff position 2g). We have performed
total energy calculations with five different arrange-
ments of Zn/Al on these Zn3 and Zn5 sites: Zn on
both sites (yielding a stoichiometry Mg2Zn5Al2), Al
on both sites (Mg2Zn3Al4), Al (Zn) on Zn3 (Zn5) or
vice versa (Mg2Zn4Al3), and finally Al on one each
of the two Zn3/Zn5 sites in the cell (Mg2Zn4Al3). (It
should be noted that this last configuration breaks the
P6̄ symmetry.) As in the case of the Gjonnes and
Simensen model, the model of Li et al. yields high-
energy results for all of the Zn/Al arrangements con-
sidered. All of these formation enthalpies are either
positive or only slightly negative, and just as in the
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case of the Gjonnes and Simensen model, the first-
principles energetics do not support the recently-pro-
posed h� model of Li et al.

4.2.3. Auld and Cousland model. The model of
Auld and Cousland is P6̄m2 and also contains eight
symmetry-inequivalent positions: two are fully occu-
pied by Mg and two by Zn. However, there are two
sites (which Auld and Cousland specify as “A” and
“E” ) as occupied two-thirds by Zn and one-third by
vacancies, and two other sites (“G” and “H” ) with
half Zn and half Al. We have considered more than
a dozen configurations of Zn, Al, and vacancies on
these four sites. The specifics of the considered con-
figurations are not reported here, but we give the
trends we found from comparing the total energies
of these various configurations: there is an energetic
preference for Al (as opposed to Zn) on the “G” and
“H” sites. On the “A” and “E” sites, the strongest
energetic preference is for these sites to be fully occu-
pied by Zn (i.e., with no vacancies). However, if these
sites are not fully occupied by Zn, it was found that
a partial occupation by Al is energetically preferable,
compared with a partial occupation by vacancies. It
is worth noting that Auld and Cousland observed
scattering power from these “A” and “E” sites which
was less than that of Zn atoms, but higher than Al
or Mg, and hence concluded that they were not fully
occupied by Zn. They considered the possibility of
Al on these sites to be unlikely based on simple bond-
length arguments. However, our total energy calcu-
lations have shown that Al on these sites is preferable
to vacancies, although full Zn occupation is the low-
est energy. Thus, our lowest-energy structure (with
Al on “G” and “H” and Zn on “A” and “E” ) is a
slight modification of the original Auld and Cousland
model, with stoichiometry Mg4Zn13Al2. The results
for all configurations based on the Auld and Cousland
model are shown in Fig. 3. Of the three models pro-
posed in the literature for h�, this is the only one
which yields “appropriate” energetics, that is,
strongly negative formation enthalpies of the same
magnitude as that of h. Thus, the first-principles
results support the validity of the Auld and Cousland
model for h�.

Table 5 gives the calculated and experimental
structural information for the h� phase, using the
model of Auld and Cousland. The calculations of the
bulk, unstrained structure yield lattice constants
which deviate from the observed values by an
unusually large amount. To this point, all calculations
in this paper have been unstrained, that is, all cell
vectors and volume are completely relaxed to their
energy-minimizing values. However, diffraction stud-
ies [55, 53] have found that the lattice parameters of
h� are constrained by the matrix of Al with the fol-
lowing orientation relationships:
ch� = 6d111Al = 2√3aAl and ah� = 2d112Al = √6/2aAl.
We have repeated the calculations of the first-prin-
ciples predicted Mg4Zn13Al2 structure straining the

lattice vectors according to the observed constraints,
but otherwise relaxing all cell-internal positions. With
these constraints, the calculated cell vectors now dif-
fer from experiment only because of the small under-
estimate of the calculated lattice parameter of alumi-
num, aAl. This strained calculation also reveals the
energetic effect of the lattice parameter constraints:
The �H of h� rises by 2 kJ/mol when the cell vectors
are strained. Also, by comparing the lattice para-
meters of the strained and unstrained calculations, we
see that the h� precipitates in Al–Zn–Mg alloys are
under very large strains: a 5.7% tensile strain along
ch� and a 3.4% compressive strain along ah�.

4.3. Al–Zn–Mg GP zones

To explore the energetics of the Al–Zn–Mg pre-
cipitation sequence more fully, we also investigated
the energetics of GP zones. As described above (for
Al–Cu–Mg), the energies of ternary Al–Zn–Mg GP
zones were estimated by considering a variety of fcc-
based superlattices. The same five superlattice orien-
tations were considered for Al1Mg1Zn1Mg1 and
Al2Mg1Zn1 superlattices. In this system, additional
calculations were performed for Al4Mg1Zn2Mg1

superlattices. This more complicated stacking was
considered based on the ordered tendencies in the Al–
Zn, Al–Mg, and Mg–Zn binaries: the Al–Zn system
shows a miscibility gap, indicating that Zn and Al
prefer to cluster, whereas Al–Mg and Mg–Zn both
order. Thus, one might speculate that an energetically
favored superlattice would entail Zn planes which are
clustered and only in contact with Mg. The Mg
planes, on the other hand, could be in contact with
both Zn and Al. Therefore, we selected the
Al4Mg1Zn2Mg1 stacking sequence to satisfy these two
criteria. From the first-principles calculations of the
16 fcc superlattices considered, we find that the
Al4Mg1Zn2Mg1 superlattice along [311] is lower in
energy than any of the considered Al1Mg1Zn1Mg1 or
Al2Mg1Zn1 stackings, or the L12-based structure. The
energy of this [311] superlattice is shown in Fig. 3
as an estimate of the GP zones energy for Mg:Zn ratio
1:1. For the Zn-rich GP zones, recent first-principles
work [59] in corroboration with precipitation experi-
ments in Al–Zn has shown that the lowest-energy fcc-
based coherent state is phase-separation between Al
and Zn along [111]. Thus, we have calculated the
coherency strain energy (as defined in Ref. [59])
along [111] for fcc-Zn, shown in Fig. 3 as an estimate
of the energetics of GP zones for zero Mg content.
For intermediate compositions, we simply linearly
interpolate between these two points, to give a rough
scale of the GP zone energetics.

4.4. Al–Zn–Mg solid solution

Estimates of the solid solution phases were also
made, using binary SQSs combined with the ternary
solid solution model as described above. Since the
various models of h� and h involve a range of differ-
ent compositions, we compute the dilute heat of for-
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Table 5. Comparison of first-principles calculated (VASP) and experimental structural and energetic properties of h� (Al–Zn–Mg), using the model
of Auld and Cousland [55]a

Property Occupation VASP Experiment [55]

VASP Ref. [55] Unstrained Strained Strained
Mg4Zn13Al2 Mg4Zn11Al1 c�� = 6d111Al c�� = 6d111Al

a�� = 3d112Al a�� = 3d112Al

a 5.04 4.87 4.96
c 13.03 13.77 14.02
c/a 2.58 2.83 2.83
V 286.2 282.8 298.7
�Heq �8.1 �6.1
(x, y, z)A Zn (0.503, 0.497, 0.000) (0.501, 0.499, 0.000) (0.500, 0.500, 0.000)2

3
Zn +

1
3
�

(x, y, z)B Mg Mg (0.000, 0.000, 0.120) (0.000, 0.000, 0.120) (0.000, 0.000, 0.113)
(x, y, z)C Zn Zn (0.333, 0.667, 0.160) (0.333, 0.667, 0.160) (0.333, 0.667, 0.148)
(x, y, z)D Mg Mg (0.667, 0.333, 0.197) (0.667, 0.333, 0.202) (0.667, 0.333, 0.183)
(x, y, z)E Zn (0.165, 0.835, 0.322) (0.166, 0.834, 0.321) (0.166, 0.833, 0.296)2

3
Zn +

1
3
�

(x, y, z)F Zn Zn (0.667, 0.333, 0.408) (0.667, 0.333, 0.410) (0.667, 0.333, 0.398)
(x, y, z)G Al (0.000, 0.000, 0.500) (0.000, 0.000, 0.500) (0.000, 0.000, 0.500)1

2
Zn +

1
2
Al

(x, y, z)H Al (0.333, 0.667, 0.500) (0.333, 0.667, 0.500) (0.333, 0.667, 0.500)1
2
Zn +

1
2
Al

a Lattice constants (a, c) are in Å, V is the unit cell volume (in Å3), (x, y, z)i are the cell-internal positions for site i, using the site notation in
Ref. [55]. �Heq is the formation enthalpy, in kJ/mol. The energy-minimizing site occupations for the first-principles calculations are distinct from
those of Ref. [55], resulting in stoichiometries of Mg4Zn13Al2 and Mg4Zn11Al1 for first-principles and experiment, respectively. Shown are calculated
results for the unstrained cell, as well as calculated structure with lattice vectors strained by the observed orientation relationships.

mation as a function of Zn:Mg ratio, from equations
(6), (8) and (2). The SQS energetics yield
�Hdilute(AlZnx) = + 9.0 kJ/mole of solute and
�Hdilute(Al(ZnMg)x) = + 7.9 kJ/mole of solute. These
dilute formation energies are shown in Fig. 3.

To summarize the energetics of Fig. 3, the ordering
of T = 0 formation enthalpies correctly follows the
observed precipitation sequence (when the Auld and
Cousland model is adopted for h�):
�H(Solid solution)��H(GP)��H(h�)��H(h).

5. Al–Cu–Mg–Si: Q PHASE

The quaternary “Q phase” is found in a wide var-
iety of Al–Cu–Mg–Si alloys, for example, 6xxx series
Al–Mg–Si alloys with Cu additions [24], or Al–Si–
Cu casting alloys containing Mg, such as Al 319 [60].
Despite its common presence in these alloys, rela-
tively little is known about the Q phase compared to
other commonly-occurring precipitates. Even the stoi-
chiometric composition of Q varies from one study
to another, reported as Al4Cu2Mg8Si7 [61],
Al5Cu2Mg8Si6 [62] and Al4Cu1Mg5Si4 [2]. Another
variant of the Q phase has been reported in Al–Mg–
Si alloys [25] without Cu in the structure. It is poss-
ible, but unsubstantiated, that the different reported
compositions are due to off-stoichiometry in the sin-
gle-phase field of Q in the quaternary phase diagram
(as opposed to a line compound).

Most of the structural studies of the Q phase have
yielded lattice constants and symmetry information,

but not the specificity of a crystal structure. The sym-
metry is generally acknowledged to be hexagonal,
with lattice constants ca a = 10.35�10.40 Å, c =
4.02�4.05 Å, and 21 atoms per unit cell. Only
Arnberg and Aurivillius [61] have proposed a
(partial) crystal structure for Q: these authors find that
the Q phase is related to the Th7S12 structure, with Si
replacing Th, Al+Mg replacing S, and Cu located at
voids of the structure. These authors used XRD to
determine the structural information and did not dif-
ferentiate between Al and Mg in their refinement.
They therefore specified the composition as
AlxCu2Mg12�xSi7.

In an effort to elucidate the crystal structure and
phase stability of Q, we perform first-principles calcu-
lations based on the model of Arnberg and Aurivillius
[61]. The atomic positions of the structure are given
in Table 6. The positions labeled M1, M2, M3, and M4

are those which contain either Al or Mg. We perform
a series of calculations based on this structure, sys-
tematically vary the Al/Mg content and site occu-
pations within these four sites in order to ascertain
the lowest-energy state. The total number of Al/Mg
sites in the AlxCu2Mg12�xSi7 model is 12. Since each
of the “M” sites in the Arnberg and Aurivillius model
has a degeneracy of three, we begin with three Al
atoms (and nine Mg atoms) making a stoichiometry
Al3Cu2Mg9Si7. The formation enthalpies of the four
possible unit cells formed by placing all three Al
atoms in each of the M sites is shown in Fig. 4. There
is a strong energetic preference for all three Al to go
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Table 6. Comparison of first-principles calculated (VASP) and experimental structural and energetic properties of Q-AlxCu2Mg12�xSi7a

Property VASP Experiment [61]

Al3Cu2Mg9Si7 Al4Cu2Mg8Si7

Unstrained Strained

cQ = aAl, aQ =
√26

2
aAl

a 10.25 10.14 10.39
c 3.93 3.98 4.02
V 357.7 353.8 375.8
(x, y, z)M1

(0.252, 0.006, 0.000) (0.253, 0.007, 0.000) (0.242, 0.002, 0.000)
(x, y, z)M2

(0.634, 0.138, 0.000) (0.634, 0.139, 0.000) (0.633, 0.140, 0.000)
(x, y, z)M3

(0.798, 0.996, 0.500) (0.797, 0.994, 0.500) (0.788, 0.992, 0.500)
(x, y, z)M4

(0.379, 0.857, 0.500) (0.379, 0.857, 0.500) (0.379, 0.859, 0.500)
(x, y, z)Cu1

(0.333, 0.667, 0.000) (0.333, 0.667, 0.000) (0.333, 0.667, 0.000)
(x, y, z)Cu2

(0.667, 0.333, 0.500) (0.667, 0.333, 0.500) (0.667, 0.333, 0.500)
(x, y, z)Si1

(0.000, 0.000, 0.000) (0.000, 0.000, 0.000) (0.000, 0.000, 0.000)
(x, y, z)Si2

(0.584, 0.857, 0.000) (0.584, 0.858, 0.000) (0.582, 0.862, 0.000)
(x, y, z)Si3

(0.421, 0.131, 0.500) (0.420, 0.131, 0.500) (0.416, 0.132, 0.500)
�Heq x = 3: �17.7 �17.5

x = 4: �15.6

a Lattice constants (a, b, c) are in Å, V is the unit cell volume (in Å3), (x, y, z)i are the cell-internal positions for atom i, and �Heq is the formation
enthalpy in kJ/mol. Shown are the calculated results for the unstrained cell, as well as calculated structure with lattice vectors strained by the
coherency relationships given in Ref. [24].

into the M1 sites (denoted “3 M1” ). Also, energetics
were calculated for several Al3Cu2Mg9Si7 configur-
ations with three Al atoms on a mixture of the four
sites. None of these structures had a lower energy
than “3 M1” .

Since the reported stoichiometries of Q,
Al4Cu2Mg8Si7 and Al5Cu2Mg8Si6, have more than
three Al atoms in the unit cell, we have also explored
the energetics of additional Al in the structure. Shown
in Fig. 4 are the energetics of configurations with four
Al atoms in the unit cell, making the stoichiometry

Fig. 4. Formation enthalpies of Q-phase AlxCu2Mg12�xSi7 unit
cells using the structural model of Arnberg and Aurivillius.
Shown are several Al3Cu2Mg9Si7 and Al4Cu2Mg8Si7 cells with
the Al atoms in the four sites Mi given in Table 6. The M1 site
is the energetically-preferred site for Al occupation. Once the
M1 sites are fully occupied by Al, the M4 site is the next most

energetically preferred.

Al4Cu2Mg8Si7. With three of the Al atoms already
accounted for in M1 sites, there are only three possible
positions (M2, M3, and M4) for the fourth Al. We find
that the M4 site is very slightly energetically preferred
for x = 4 Al stoichiometries. However, all considered
configurations have formation energies higher than
that of the lowest energy Al3Cu2Mg9Si7 state (with
three M1 Al atoms).

To examine the Al5Cu2Mg8Si6 stoichiometry, we
begin with the lowest energy Al4Cu2Mg8Si7 cell, and
systematically replace one Si atom with an Al, for
each of the three Si sites. The energies of these con-
figurations (not shown in Fig. 4) demonstrate that the
Si1 site is strongly preferred, relative to Si2 or Si3 for
Al atoms. In all cases though, this Al5Cu2Mg8Si6 cell
has a higher formation enthalpy than either the
Al4Cu2Mg8Si7 or Al3Cu2Mg9Si7 cells.

We have also considered configurations with fewer
than three Al atoms, x = 2, 1, and 0 (all Al atoms in
the M1 sites). The results of all of the above calcu-
lations, plotted as a function of Al content are shown
in Fig. 5. Clearly, the x = 3 composition represents
the lowest-energy state. Either adding additional Al
to this structure, or replacing Al with Mg in this struc-
ture results in a T = 0 energy penalty. From these cal-
culations, we propose a new stoichiometric compo-
sition of the Q phase, Al3Cu2Mg9Si7, and assert that
observed compositions with higher Al content than
this are due to off-stoichiometry in the phase field of
Q at finite temperatures. From these calculations,
then, we provide an experimentally testable predic-
tion: the composition of Q obtained as a precipitate
in Al–Cu–Mg–Si alloys should be temperature-
dependent (in contrast to the prediction of Q as a stoi-
chiometric line compound, which would yield a tem-
perature-independent composition). This off-stoichi-
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Fig. 5. Formation enthalpies of Q-phase AlxCu2Mg12�xSi7 unit
cells as a function of x. The lowest-energy structure is for

x = 3, or Al3Cu2Mg9Si7 stoichiometry.

ometry also could explain the differing compositions
reported by various authors, and should provide a
basis for a more accurate treatment of Q in compu-
tational thermodynamics approaches where Q is cur-
rently treated as a line compound [63].

Although Arnberg and Aurivillius were unable to
distinguish Al and Mg in their refinements, they did
offer some suppositions about their site occupations
[61]. Since the M1 sites are 12-fold coordinated
whereas the M2, M3, and M4 sites are 15-fold coordi-
nated, they assumed that the M1 sites would be occu-
pied by Al. Based on bond-length arguments, they
also supposed that any additional Al atoms in the
structure would prefer the M4 sites, and that M2 and
M3 sites would be exclusively occupied by Mg.
Remarkably, although these arguments are quite
speculative, in each case they are confirmed by our
first-principles calculated energetics.

In addition to the equilibrium form of Q, a coherent
version of the same phase has been noted, with coher-
ency relations [24]: cQ = aAl, aQ = (√26/2)aAl. We
have also performed calculations of our
Al3Cu2Mg9Si7 cell with lattice vectors strained by
these coherency relations (Table 6). The equilibrium
lattice parameters are already quite close to these con-
strained values, thus demonstrating only a very small
strain (and hence a very small energetic effect of
coherency). Our calculations indicate that the coher-
ent version of Q is under a 1.1% compressive strain
along a and a 1.3% tensile strain along c.

6. SUMMARY

We have demonstrated the utility of first-principles
calculations in elucidating the crystal structures and
phase stability of several complex, multicomponent
precipitate phases in Al alloys: S (Al–Cu–Mg); h�
(Al–Zn–Mg); and Q (Al–Cu–Mg–Si). A critical

assessment of the accuracy of first-principles forma-
tion enthalpies in a wide variety of ordered Al-rich
intermetallics shows that the calculated energetics are
in excellent quantitative agreement (to within 2
kJ/mol) with experimentally assessed databases.
Since there is no reason to expect first-principles
methods to be any less accurate for multicomponent,
or metastable ordered phases, we expect that the first-
principles methods are capable of discriminating
between the various crystal structure models proposed
for S, h�, and Q.

In addition to the metastable precipitate phases, we
also calculate the energetics of the equilibrium
phases, solid solutions, and coherent GP zones in
each system. The multicomponent solid solution mix-
ing energies are obtained using a simple quadratic
function of composition, with coefficients fit to ener-
gies of binary SQSs. Coherent GP zone energetics are
estimated from a series of fcc-based superlattice cal-
culations, using a wide range of superlattice stackings
and orientations.

6.1. Al–Cu–Mg

The first-principles calculated energetics support
the XRD model of the Al2CuMg S phase given by
Perlitz and Westgren. The calculated properties of S
agree well with experiment for lattice constants, cell-
internal parameters, and formation enthalpies. Calcu-
lations of a recently proposed structure for S, deduced
from HREM, yield a very high energy, and therefore
we suggest that this model be revisited. The energies
of fcc-based superlattices show a low
energy…Al/Cu/Al/Mg…superlattice along (100),
which may be an indication of the preferred type of
ordering in GPB zones, although a more detailed
study of this problem is required to make these con-
clusions more definitive. Estimates of the ternary
solid solution phase yield energetics consistent with
the observed precipitation sequence in these alloys:
�H(Solid solution)��H(GPB)��H(S).

6.2. Al–Zn–Mg

Calculations of three distinct models of the h�
phase crystal structure demonstrate that the Auld and
Cousland model yields reasonable energetics in this
system, whereas the other two models do not.
Additionally, we have found the energetically-pre-
ferred occupations for partially occupied sites in the
Auld and Cousland model, which lead to a new, pro-
posed low-energy stoichiometry for this phase:
Mg4Zn13Al2. The equilibrium phases (MgZn2 and
Mg2Zn11), for which the crystal structures are known,
yield calculated structural and energetic properties in
good agreement with experimental values, giving
confidence in the calculated properties of the meta-
stable h� phase. Energetics of 16 fcc superlattices
considered show a complicated stacking sequence is
lowest in energy, again underscoring the need for a
more thorough study of fcc-based configurations to
deduce the structure of GP zones in the Al–Zn–Mg
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system. Combining the calculated mixing enthalpies
of the ternary solid solution to the calculations of
equilibrium, metastable, and GP zone phases, gives
energetics in line with the observed precipitation
sequence: �H(Solid solution) ��H(GP) �� H(h�)
�� H(h).

6.3. Al–Cu–Mg–Si

First-principles calculations of the quaternary Q
phase were performed using the model of Arnberg
and Aurivillius. The calculated structural properties
are in good agreement with observed lattice constants
and cell-internal positions. Additionally, we provide
formation enthalpies of this phase to serve as predic-
tions for future experimental investigations, as we are
unaware of any observed energetics for this phase.
The site occupation of Al versus Mg is not given in
the Arnberg and Aurivillius model, but our calcu-
lations clearly demonstrate the energetic site prefer-
ence for these two species, yielding a new energy-
minimizing stoichiometry for this phase:
Al3Cu2Mg9Si7. Observations of additional Al content
in this phase could be an indication of off-stoichi-
ometry in the Q single-phase-field, since these obser-
vations are typically for Q phase precipitates in Al-
rich alloys.
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APPENDIX A

A.1. Description of 16-atom SQS structures

Table 7 gives the structural description of the SQS
structures used for stoichiometries x = 1/2 and
x = 1/4. The lattice vectors, (ideal) cell-internal pos-
itions, and occupations (A versus B atoms) are given.
The SQS at x = 1/2 has average pair correlation func-
tions (as discussed in Ref. [42]) equal to the random
alloy for all pairs from first- to seventh-nearest-
neighbor, whereas the x = 1/4 structure first differs
from the random alloy at fourth-nearest neighbor.

Table 7. Structural description of the 16-atom SQS structures for
x = 1/2 and x = 1/4a

SQS-16 (x = 1/2) SQS-16 (x = 1/4)
AB A3B

Lattice vectors
a1 = (1.0, 0.5, 0.5) a1 = (1.0, 0.5, 0.5)
a2 = (0.0, 1.0, �1.0) a2 = (�0.5, 1.5, 0.0)
a3 = (�1.0, 1.5, 1.5) a3 = (�0.5, �0.5, 2.0)

Atomic occupations and positions
A—(0.5, 0.5, 0.0) A—(0.0, 0.0, 2.0)
A—(0.0, 0.5, 0.5) A—(�0.5, 0.0, 1.5)
A—(0.0, 1.0, 1.0) A—(0.0, 0.5, 1.5)
A—(0.0, 1.5, 0.5) A—(�0.5, 0.5, 1.0)
A—(�0.5, 1.5, 0.0) A—(0.0, 1.5, 0.5)
A—(�0.5, 1.5, 1.0) A—(0.5, 1.0, 0.5)
A—(0.0, 2.0, 1.0) A—(�0.5, 0.5, 2.0)
A—(�0.5, 2.0, 0.5) A—(0.0, 1.0, 2.0)
B—(0.0, 0.0, 0.0) A—(�0.5, 1.0, 1.5)
B—(0.0, 0.5,�0.5) A—(0.0, 1.5, 1.5)
B—(0.5, 1.0,�0.5) A—(0.0, 0.0, 1.0)
B—(0.5, 1.0, 0.5) A—(0.5, 0.5, 1.0)
B—(0.0, 1.0, 0.0) B—(0.0, 0.0, 0.0)
B—(0.5, 1.5, 0.0) B—(0.0, 1.0, 1.0)
B—(�0.5, 1.0, 0.5) B—(�0.5, 1.0, 0.5)
B—(0.0, 1.5, 1.5) B—(0.0, 0.5, 0.5)

a Lattice vectors and atomic positions are given in Cartesian coordi-
nates, in units of a, the fcc unit cell vector. Atomic positions are given
for the ideal, unrelaxed fcc sites.


