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Abstract-The high creep resistance of dispersion-strengthened metals is the result of a threshold stress, 
which is determined in existing models by considering the interaction of a single dislocation with 
dispersoids. This paper presents a new model which takes into account the effect of dislocation pile-ups 
upon the detachment threshold stress of dispersion-strengthened metals. First, it is shown that dislocation 
pile-ups are expected to form at dispersoids when the volume fraction and/or size of the dispersoids is 
large. Then, the equilibrium dislocation positions within the pile-ups are calculated and the resulting shear 
stress exerted upon the detaching dislocations pinned at the dispersoids is determined. Finally, this pile-up 
stress is added to the athermal detachment threshold stress determined with existing models to find a total 
threshold stress. Calculations for aluminum containing 25 vol.% alumina dispersoids show that the 
magnitude of the pile-up stress is comparable to the athermal threshold stress, and thus contributes 
significantly to the total threshold stress. The model also predicts a creep activation energy much higher 
than that of the unreinforced metal as a result of the temperature dependence of the number of dislocations 
in the pile-ups. ~13 1997 Acta Metallurgica Inc 

1. INTRODUCTION 

Because of their outstanding strength at elevated 
temperatures, dispersion-strengthened metals con- 
taining unshearable dispersoids have been the subject 
of many experimental and theoretical creep studies. 
as reviewed in Refs [l-4]. When deformation is 
controlled by dislocation glide and climb, the tensile 
creep rate ; of both dispersion-strengthened metals 
and dispersoid-free metals can be described by a 
power-law equation: 

(1) 

where 0 is the applied tensile stress, n’ the apparent 
stress exponent, Q’ the apparent activation energy, R 
the gas constant, T the absolute temperature and A 
is a function of the elastic modulus and temperature. 
In the low-stress region of the power-law regime, the 
creep rate of dispersion-strengthened metals is much 
lower than that of the dispersion-free matrix, while 
their stress- and temperature sensitivity (n’ and Q’. 
respectively) are much higher. This behavior can be 
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modeled by considering an athermal threshold stress 
oth below which dislocation creep does not occur, 
leading to a modified power-law equation: 

&=A[a-o$exp 

where A is a constant proportional to the shear 
modulus and inversely proportional to temperature, 
n the matrix stress exponent and Q the matrix 
activation energy which is equal to the volume 
diffusion activation energy. While deformation 
below the athermal threshold stress is possible by 
thermal activation or by onset of an independent 
mechanism such as diffusional creep, the athermal 
threshold stress is a useful approximation allowing 
a consistent description in the experimentally 
measured creep range of dispersion-strengthened 
metals. As reviewed by Refs [l-4] and summarized 
briefly below, most researchers attribute the power- 
law threshold stress to the interaction between 
matrix dislocations and dispersoids. 

An upper bound for the threshold stress is given 
by the Orowan stress goi, above which dislocations 
bypass dispersoids by bowing within their glide 
plane [5]: 

(3) 
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where A4 is the mean matrix orientation factor, G 
the matrix shear modulus, v the matrix Poisson’s 
ratio, b the matrix Burger’s vector, d= J2/3d, the 
mean diameter of a circular section in a random 
plane for a spherical particle of diameter d and X 
the mean interparticle distance given by Ref. [5] 
as 

I=d u- ) k-1 (4) 

assuming a cubic arrangement of spherical disper- 
soids of volume fraction 5 

If dislocations can climb out of their glide plane, 
bypass of the dispersoids (and thus macroscopic 
creep deformation) can occur at stresses below the 
Orowan stress. The threshold stress is then the 
result of the interaction between the dislocations 
and the dispersoids during the climb bypass. In a 
first series of models (climb threshold models), the 
origin of the threshold stress is the increase in 
dislocation line length during bypass. Thus, the 
geometric configuration of the dislocation during 
climb determines the magnitude of the threshold 
stress. In the local climb model [5-71, the climbing 
portion of the dislocation assumes the shape of the 
dispersoid, while in the general climb model [8], the 
dislocation line between the dispersoids is also 
allowed to climb out of the slip plane, thus 
reducing the total dislocation line length. Finally, 
the cooperative climb model [9] assumes that the 
dislocation overcomes groups of dispersoids instead 
of threading between individual dispersoids, further 
reducing the total dislocation length and the 
threshold stress. 

A second series of models (detachment threshold 
models) developed by Arzt and coworkers [lo, 111 
considers the dislocation after it has overcome the 
dispersoid by climb. If the matrix-dispersoid 
interface is incoherent, an attractive force resulting 
from the spreading of the dislocation core pins the 
dislocation at the departure side of the dispersoid 
[12]. The resulting detachment threshold stress e&t 
is given by 

gdet = &,-%r (5) 

where k is the relaxation factor defined as the ratio 
between the dislocation line energies at the particle- 
matrix interface and within the bulk matrix. The 
factor i [which is close to unity for low volume 
fractions f and is then often omitted in equation (5)] 
is defined as c = x/L, where L is the center-to-center 
spacing of spherical dispersoids arranged on a cubic 
lattice: 

0 l/3 

L=d$ . 

While deformation is possible below the detachment 
threshold stress by thermal activation [13], the 

resulting creep strain rate is not experimentally 
measurable if the relaxation factor is less than 
about k = 0.9. Equation (5) can then be considered 
as the athermal threshold stress for equation (2). 
As an alternate explanation for the attractive 
dispersoid-dislocation interaction, Mishra et al. [14] 
considered the dissociation of the climbing lattice 
dislocation into partial interfacial dislocations. Their 
model also predicts a threshold stress as a function of 
dispersoid diameter and volume fraction. Finally, 
Arzt and Gijhring [15] extended the detachment 
model for the case of a superdislocation in an ordered 
matrix detaching from a dispersoid, and took into 
account the additional interactions resulting from 
the repulsion between the two superpartials and from 
the attraction owing to the resulting antiphase 
boundary. 

Except for the two models described above where 
the elastic interaction within a pair of dislocation 
partials [14] or superpartials [15] is considered, all 
existing threshold stress models assume that the 
dislocation overcoming the dispersoid is not 
affected by the stress field of the other dislocations 
in the crystal. As described in more detail later, this 
assumption is adequate for low dispersoid volume 
fractions typical of most mechanically alloyed or 
internally oxidized dispersion-strengthened alloys 
studied to date. Recently, a novel pressure-infiltra- 
tion casting technique has been developed for 
fabrication of dispersion-strengthened metals with 
dispersoid volume fractions (25 vol.% and above) 
much higher than achievable by mechanical alloy- 
ing or internal oxidation [16]. As shown by 
equations (3) and (4), the Orowan stress (and thus 
the threshold stress and the overall creep resistance 
of dispersion-strengthened metals) is expected to 
increase with increasing dispersoid volume fraction. 
However, for high volume fractions of unshearable 
dispersoids, the assumption of a single dislocation 
interacting with a single dispersoid (or dispersoid 
group) no longer holds, because dislocations are 
expected to form pile-ups at the dispersoids. 

The present paper describes a new model for the 
detachment threshold stress which takes into 
account the effect of dislocation pile-ups on the 
detachment process. The companion article [17] 
compares the predictions of this model with 
experimental data on aluminum containing 
25 vol.% submicron alumina dispersoids. 

2. MODEL 

In all existing threshold models, the lattice 
dislocations are assumed to be randomly distributed 
in the crystal, so that their stress fields upon the 
dislocations overcoming the dispersoids are neg- 
lected. However, when the number of dispersoids per 
unit volume is large and when dislocations glide 
between dispersoids much more rapidly than they 
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bypass them by climb, dislocation pile-ups can form 
at dispersoids under the influence of the applied 
stress, as observed by transmission electron mi- 
croscopy in a companion article [17]. The resulting 
spatial distribution of lattice dislocations is no longer 
random and the stress fields from these pile-ups 
cannot anymore be assumed to cancel at all points 
within the material. Rather, these stress fields will 
affect the lead pile-up dislocation pinned by the 
dispersoid, and either aid or hinder the bypassing 
process (bowing, climb or detachment) by which this 
controlling dislocation overcomes its obstacle, and 
thus will either decrease or increase the value of the 
threshold stress. 

In the following sections, we model the threshold 
stress in dispersion-strengthened metals with high 
volume fractions of dispersoids by first determining 
the number of dislocations per dispersoids, then 
calculating their equilibrium positions and finally 
computing the stress from the pile-ups upon the 
dislocation controlling the bypass mechanism. 

2.1. Number of dislocations per dispersoid 

Dislocation pile-ups can form at dispersoids if the 
number N of mobile matrix dislocations of length L 
per dispersoid is larger than unity. Assuming straight 
dislocations with density p and dispersoids arranged 
on a cubic lattice, N is the ratio of the number of 
dislocations [with length L and within a unit matrix 
volume (1 -f)p/L, where L is given by equation (6)] 
and the number of dispersoids per unit volume L3: 

Furthermore, the density of mobile dislocations p can 
be expressed as 

2 

where M: is a constant and the applied stress g is 
usually a free variable. However, the stress range 
where dispersion-strengthened metals are typically 
used for structural applications is bounded by an 
upper limit, the Orowan stress goi, and a lower limit, 
the threshold stress, itself a fraction of the Orowan 
stress. We thus assume that the applied stress is a 
constant fraction of the Orowan stress: 

G = c.00, (9) 

where C is a constant less than unity. Insertion of 
equations (3), (4), (8) and (9) into equation (7) gives 
an expression for N which is independent of both the 
dispersoid spacing L and the dispersoid diameter d, 
except for a weak logarithmic dependence: 

(10) 

In equation (lo), the constant C’ contains geometri- 
cal and materials parameters: 

C.M 
C’ = 0.251’~ (11) 

aJl-v 

Equation (10) is thus a function of the material 
constants, tl, v and b and the geometrical par- 
ameters C and M which do not vary strongly from 
metal to metal. Thus, to a first approximation, N 
depends only on the dispersoid volume fraction f 
and, weakly, on the dispersoid diameter d. 

2.2. Pile-up equilibrium configuration 

With the number of dislocations per dispersoid N 
defined by equation (lo), we assume that these 
dislocations form a single pile-up against the 
dispersoid. The position of N edge dislocations 
within a pile-up of constant length L [center-to-cen- 
ter dispersoid distance, equation (6)] can then be 
calculated by using a global equilibrium criterion in 
the simplified geometrical model shown in Fig. l(a), 
which assumes that dispersoids form a regular 
cubic arrangement in the matrix. While solutions 
for the positions of dislocations within single- 
ended, stressed pile-ups and within double-ended, 
unstressed pile-ups of individual dislocations exist 
[ 181, we are not aware of solutions for double- 
ended. stressed pile-ups of dislocations, as in the 
present problem. We consider a repeating unit cell 
with (N + 1) parallel, coplanar edge dislocations 
arranged in a pile-up consisting of (N - 1) mobile 
dislocations bound by two immobile dislocations at 
positions x0 = 0 and xh’ = L [Fig. l(a)]. To avoid 
inducing a net curvature in the material by 
repeating unit cells with dislocations of the same 
sign over long distances along the x-axis, the 
material is assumed to be formed of regions with 
positive edge dislocations (such as in Fig. 1) and 
equivalent regions with negative edge dislocations 
with the same overall number of dislocations of 
each sign. The number of dislocations associated 
with the boundary between these regions is 
assumed small compared to the number of dislo- 
cations within the regions. 

Under the influence of a negative applied shear 
stress --za, the equilibrium positions x, [for i = 1 to 
(N - l)] of the (N - 1) mobile dislocations are 
given by the force equilibrium condition: 

where the shear stress T(X, y) at point (x, y) owing to 
the stress field of an edge dislocation at the origin is 
given by [19]: 

Gb x(x’ - y’) 
+; y) = 241 - v) (x2 + y)2 (13) 
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which simplifies for y = 0 (on the glide 

z(x) = 
Gb 1 

2n(l -v) 5. 

FRACTIONS OF UNSHEARABLE DISPERSOIDS-I 

plane) to: given by equation (12) with the shear stress given in 
equation (14) leads to the equilibrium positions of 

(14) (N - 1) dislocations in an isolated pile-up (i.e. 
0 < xi < L and y = 0). However, the stress fields of 

Solving the system of (N - 1) non-linear equations all other pile-ups in neighboring cells also influences 
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Fig. 1. Two-dimensional view of pile-up configurations. Dislocations at head of pile-ups at xi N (i: integer) 
are pinned. (a) Configuration used to find equilibrium dislocation positions; (b) configuration in the 
presence of dispersoids. For detachment control, the dislocation wall at the origin (x,) is the reference 
wall for which the forward stress from walls x, to xN- I and the backstress from walls x-1 to X-W _ 11 are 

calculated. 



the positions of the pile-up dislocations and must model shown in Figs l(b) and 2 is used with the 
be considered in the calculation. A simple approxi- following assumptions: 
mate solution for this problem is given in the 
following. 

The ensemble of dislocations with the same 
. Dislocation detachment from the dispersoid is 

x-coordinate and the y-coordinate given by +j.L, 
taken as the controlling mechanism for the 
motion of dislocations and thus for the material 

where j is a non-zero integer, can be described as a 
dislocation wall with spacing L [Fig. l(a)]. The exact 

creep. We note that the present model could 

solution for the shear stress component at point (x, y) 
easily be adapted to other bypassing mechanisms 

owing to the stress field of an infinite wall of 
such as local, general or cooperative climb, 

dislocations (with one of its dislocations at the origin) 
Orowan bowing or dispersoid shearing. Detach- 
ment control is expected for relaxation factors 

is [20]: k < 0.9 [13] and is thus applicable to many 

7(x; y) = dispersion-strengthened systems of interest such 

Gb 

2 

cosh(~)cos(~) - 1 

as dispersion-strengthened aluminum or bubble- 
strengthened tungsten [21]. As noted by Arzt and 
Riisler [I I], the athermal detachment stress 

- 
2rc(l - v) h2 

’ * 2( sinhZ(y) + sinZ(y) y (15) 
[equation (5)] is independent of the dispersoid 
size or shape (except through the Orowan stress), 
the height of the intersection between the 
dispersoid and the glide plane, and the climb 

where h = L is the spacing of edge dislocations within process (local, general, cooperative) before the 
the wall. For y = 0, equation (15) simplifies to detachment point is reached. 

??The material is modeled as a unit cell (shown in 

7(x) = 2n(y_ v) i (y)2sinh-2(y). (16) 
Fig. 2) repeating along three orthogonal axes and 
containing P spherical dispersoids with unbowed 
edge dislocations on a single glide plane which 

The stress field of the wall [equation (16)] thus 
corresponds to the stress field of a single dislocation 
[equation (14)] multiplied by a factor K: 

K = (y>‘sinh-‘(7) 
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intersects the dispersoid at its equator. The 
dispersoids are thus arranged on a cubic lattice 
and the dislocations form pile-ups on parallel and 
equidistant glide planes, which are held by the 
detaching dislocation at the departure side of the 
dispersoid. 

??Dislocations climb cooperatively over groups of 

which tends to unity for small values of x and dispersoids in the threading shape shown in 

decays exponentially to zero for positive values of Fig. 2. This climb geometry is expected for high 

rcx/h. The stress field of a wall is therefore always volume fractions of dispersoids, since it 

weaker than that of a single dislocation, as a result minimizes the dislocation line length [9]. The 

of the shielding effect of the dislocations in the number of dispersoids being overtaken as a 

wall. Even for short distances, we can neglect the group is the parameter P. The friction stress [lo] 

effect upon a given dislocation wall of other walls during glide and climb of the dislocations is 

translated along the x-axis by a factor Ax = kj.L neglected, except at the detachment point itself. 

(where j is a non-zero integer). For example, Friction is expected to be small during coopera- 

equation (17) gives a value K = 7.4 x lo-’ for tive climb. 

x = h and K = 5.5 x 10m4 for x = 2h, correspond- 
ing to the first two neighboring walls (j = l-2). For As shown in Fig. 2, the portion of the dislocation 
large distances xx/h, the stress fields of walls on line length that is overcoming the dispersoids (i.e. out 
either side of a given dislocation wall are expected of the glide plane) has a length P.L - (L - d). For 
to cancel each other. The problem can thus be this portion of the dislocation, the height y$ above the 
approximated to finding the equilibrium positions slip plane is determined by the spherical shape of the 
of (N - 1) coplanar dislocation walls bound by two dispersoid of diameter d: 
immobile walls at x, = 0 and xN = L. This can be 
achieved by solving the system of (N - 1) equations y, = fJ& - (2x, - d)* for 
given by equation (12) with the stress field of walls 

0 < x, < d. (18a) 

given in equation (16). 
For the dislocations which are not in contact with the 

2.3. Dislocation positions dispersoid (i.e. still on the slip plane), the height is 

Once the x-coordinates of the (N - 1) mobile simply 

dislocation walls in the pile-up are known, each is 
assigned a y-coordinate. The simplified geometric y,=O for d<x,<L. (18b) 
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Fig. 2. Three-dimensional view of a unit cell consisting of a dislocation pile-up (N = 4) undergoing 
cooperative climb at groups of dispersoids (P = 3); corresponding three orthogonal projections of two 

unit cells of length P.L. 

Similarly, the portion of the dislocation of length 
(L - d) = 1 which threads along the z-axis between 
groups of dispersoids is also in the slip plane and has 
y-coordinate given by 

y,=O for O<xi<L. (18c) 

We thus assume that the x-coordinates of the 
dislocation segments which have climbed outside the 
glide plane are unchanged from those calculated 
within the glide plane from equation (12). This is a 
simplification, since rearrangement along the x-axis 
can be expected from the new y-coordinates of the 
dislocations given by equations (18aH 18c). 

2.4. Pile-up stress and threshold stress 

Once the coordinates of the dislocations are 
known, the pile-up stress and the resulting modified 
threshold stress can be calculated. The following 
simplifications are made: 

??The dispersoids do not affect the elastic stress 
field of the dislocations. This assumption is 
correct only if(i) no thermal or elastic mismatch 
exist between dispersoid and matrix and (ii) if the 
elastic constants of the dispersoid and matrix are 
equal. Assumption (i) is expected to be fulfilled at 
high temperature where mismatch strains can be 
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relaxed rapidly. Assumption (ii) is not fulfilled in 
most dispersion-strengthened systems for which a 
long-range elastic interaction between the matrix 
dislocation and the dispersoids is expected [22]. 
This interaction is repulsive (respectively, attrac- 
tive) for dispersoids stiffer (respectively, less stiff) 
than the matrix, and is different from the 
short-range interaction resulting from the relax- 
ation of the dislocation at the interface [12], 
which is attractive (k < 1) for inclusions both 
stiffer and less stiff than the matrix. 

??The dislocations are straight and parallel both 
outside and within the glide plane. While the 
former assumption is expected to hold during 
cooperative climb, the segments of dislocations 
that remain in the glide plane (y = 0) bow 
between the dispersoid with a radius inversely 
proportional to the effective stress. We thus 
model the elastic interaction between bowed 
dislocations as equivalent to that between 
straight dislocations. 

??The stress field of the curved dislocation arms 
(with maximum length nd/4, Fig. 2) connecting 
the straight sections within and outside the glide 
plane is neglected. This assumption becomes 
better, the larger the number P of dispersoids 
being cooperatively bypassed. 

??Since the stress fields of dislocation walls decay 
rapidly with distance [equations (16) and (17)], it 
is sufficient to consider the effect of the two pile 
ups of (N - 1) dislocation walls on either sides of 
the pinned, detaching dislocation at the origin 
(Fig. 2). 

The pile-up of walls with positions x_, to x_(,+ ,) 
exerts on the dislocation pinned at the origin a 
(usually positive) backstress rb which opposes the 
(negative) applied stress ra. By symmetry, this 
backstress is equal to the stress upon the detaching 
dislocation at position xN = L owing to walls at 
positions x, to xN_ , : 

N- I 
zi, = 1 ‘$,t - xi; y,). 

,=I 
(19) 

On the other hand, the pile-up of walls at positions 
xl to XN- , exerts on the detaching dislocation at the 
origin a (usually negative) forward stress zf which aids 
the (negative) applied stress 7,: 

N-l 
rf = 1 r(-x,,y,). (20) 

i=I 

Adding the contributions of the forward and 
backstress (which are usually of opposite signs) gives 
the total pile-up shear stress zP exerted by the two 
nearest-neighbor pile-ups of walls in the interval 
-L < x < L upon the pinned dislocation at the 
origin. 

Along the z-axis, the dislocation line is separated 
into two regions (Fig. 2): the dispersoid region with 
a line length fraction 1 - (L - d)/P.L [where the 
y-coordinate of the dislocations is given by equations 
(18a) and (18b)] and the interdispersoid region with 
a line length fraction (L - d)/P.L [where the 
y-coordinate of the dislocations is given by equation 
(18c)]. The net pile-up stress in the interdispersoid 
region zb is given by: 

ri = r; + Z1 P f (21) 

where 7; and r; are given by equations (19) and (20) 
with y = 0 [equation (19c)]. The pile-up stress sb in 
the interdispersoid region is always of the same sign 
as the applied shear stress (and thus it aids the 
detachment process), because the magnitude of z; is 
always larger than that of rt, owing to the geometry 
of the pile-ups. Similarly, the net pile-up stress in the 
dispersoid region ri is 

zP = rg + zp P (22) 

where rg and zp are given by equations (19) and (20) 
with the y-coordinate defined by equations (18a) and 
(18b). Since the dislocations between x0 = 0 and 
x = d have non-zero y-coordinates [equation (18a)], 
the sign and magnitude of 7,” is sensitive to the exact 
positions of the dislocations defined by equations 
(12) (Isa) and (18b). Consequently, the pile-up stress 
7,” in the dispersoid region may be of the same or 
opposite sign as the applied shear stress, and it may 
aid or hinder the detachment process. 

The total pile-up shear stress on the detaching 
dislocation at the origin is then taken as the sum of 
the net pile-up stresses in each region [equations (21) 
and (22)] weighted by their respective dislocation line 
length: 

r,=yr;+[l -W]Z;. (23) 

Finally, the total tensile threshold stress 0th is the sum 
of the detachment threshold stress odet [equation (5)], 
resulting from the interaction between the detaching 
dislocation and the dispersoid, and the total pile-up 
tensile stress gP = M.7, [equation (23)], resulting 
from the interaction between the detaching dislo- 
cation and the two nearest-neighbor wall pile-ups: 

gth = cdet + d,,. (24) 

3. DISCUSSION 

In the following, we discuss the model presented 
above and illustrate it by considering the Al-AhO, 
system (with materials parameters listed in Table l), 
for which experimental data are presented in a 
companion article [ 171. 
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Table 1. AI-ALO, materials parameters 

Property Value Ref. 

Aluminum matrix 
Magnitude of Burger’s 
vector b (nm) 
Poisson’s ratio Y (-) 
Shear modulus G (GPa) 
Dislocation constant c( (-) 
Mean orientation factor M (-)t 

Alumina dispersoids 
Volume fraction f (-) 
Diameter d (nm) 
Relaxation parameter with Al k (-) 

0.286 [231 

0.345 
25.4 [l-o.5 (T- 300)/933] t::; 

1.25 P51 
3.06 u41 

0.25 
280 

0.80 1211 

TRandomly oriented f.c.c. metal. 

3.1. Dislocation number 

The number N of dislocations (of length L) per 
dispersoid is plotted according to equation (10) in 
Fig. 3 for a range of dispersoid volume fractionsfand 
diameters d and for an applied stress half of the 
Orowan stress [C = 0.5, equation (9)]. We note that 
equation (10) can only give an estimate for N, as the 
experimental values for the geometrical and materials 
parameters c( and C are approximate and as 
dislocation entanglement and curvature may alter the 
value calculated under the assumption of straight 
dislocations. Despite the complex volume fraction 
dependence of equation (lo), N is nearly linearly 
proportional to the volume fraction f in the range 
0.01 <f< 0.21. Furthermore, N slowly increases 
with increasing dispersoid diameter d. As described in 
the previous section, pile-ups are expected to form for 
N > 1. Accordingly, the two main dispersoid 
parameters (diameter d and volume fraction f) are 
plotted against each other in Fig. 4 for the conditions 
N = 1, N = 5 and N= 10 [equation (lo)]. Most 
oxide-dispersion-strengthened materials studied in 

d=lOOO nm 

N 

0 0.1 0.2 0.3 0.4 

f 
Fig. 3. Number N of dislocations (of length L) per 
dispersoid as a function of dispersoid volume fractionfand 
diameter d for a stress half of the Orowan stress (C = 0.5) 

plotted from equation (10). 

creep to date contain low volume fractions of fine 
dispersoids (i.e.f< 0.1 and d < 100 nm), correspond- 
ing to a value of N significantly smaller than unity 
(Figs 3 and 4). For these materials, the influence of 
neighboring dislocations upon the dislocation over- 
coming the obstacle can thus be neglected and the 
models referred to in the Introduction are adequate. 
However, for dispersion-strengthened materials with 
high volume fractions of large dispersoids, such as the 
Al-A1203 materials investigated in a companion 
article [17] (i.e. S= 0.25 and d = 280 nm), equation 
(10) predicts values of N significantly larger than 
unity (i.e. N = 5). Thus, dislocations may form 
pile-ups at dispersoids and change the effective shear 
stress to which the controlling dislocation is 
subjected, as described in the preceding section. 
Finally, N is also much larger than unity for materials 
such as particulate-reinforced metal matrix com- 
posites with high volume fractions of very large 
particles (i.e. f> 0.1 and d > 3 pm). However, the 

d/b 

lo4 

lo3 

ld 

I” 

0 0.1 0.2 0.3 0.4 

f 

Fig. 4. Dispersoid size d (normalized by matrix Burger’s 
vector b) as a function of dispersoid volume fraction f for 
different values of the number N of dislocations (of length 
L) per dispersoid. Existing mechanically alloyed (MA) and 
sintered aluminum powder (SAP) materials typically exhibit 
values of N less than unity, while dispersion-strengthened 
cast (DSC) materials discussed in Ref. [17] show values of 

N significantly higher than unity. 
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Fig. 5. Dimensionless dislocation position x,/L as a function 
of the total number of free dislocations N - 1 in a pile-up. 
Positions are calculated from equation (12) for a dislocation 
pile-up with length L = 360 nm [calculated from equation 
(6) from parameters in Table l] for dispersion-strengthened 
aluminum subjected to an applied tensile stress r~ = 64 MPa 
at a temperature T = 400°C. The positions of the pinned 
dislocations at the head of the pile-up (x0/L = 0) and at its 
end (x,~/L = 1) are not marked. Lines connect the ith 

dislocations in each pile-up. 

magnitude of the Orowan stress for these materials is 
small, because of the large interparticle distance 
resulting from the large particle diameter [equations 
(3) and (4)]. The creep strength of these materials is 
not dictated by dislocation-dispersoid interactions 
but by constrained matrix deformation, load transfer 
from matrix to reinforcement and, at lower 
temperature, by forest hardening from punched 
dislocations [16,26-281. Therefore, the following 
discussion concerning the threshold stress does not 
apply to those materials. 

3.2. Pile-up configuration 

The position along the x-axis of each of the N - 1 
mobile dislocations in the pile-up, as determined 
numerically from equation (12), is shown in Fig. 5 for 
dispersion-strengthened aluminum (Table 1) for 
representative stress and temperature values (z/ 
p = 10m3, T/Tm = 0.72). Using the stress field of a 
wall [equation (16), with h = L] resulted in an 
interdislocation distance slightly smaller than if the 
stress field of a single, unshielded dislocation 
[equation (14)] had been used [29]. Varying the 
applied stress and the temperature within the 
expected window of use for dispersion-strengthened 
aluminum has only a small effect on the dislocation 
positions [29, 301. As N increases, the interdislocation 
distance decreases (since the pile-up length L is 
constant) and the magnitude of the stress from the 
pile-up dislocations upon both pinned dislocations at 
the head of the pile up (x/L = 0) and at its end 
(x/L = 1) increases. Figure 5 also shows that, with 
increasing N, the center of gravity of the pile-up 

moves towards the pinned dislocation at the head of 
the pile-up, so that the forward stress [equation (20)] 
increases faster than the backstress [equation (19)]. 

Finally, we note that the present model can predict 
unreasonably small interdislocation distances 
(AX < h) for high values of N. This is because an 
infinite climb resistance is assumed, so that all 
dislocations are confined to the same glide plane. 
However, with a high number of dislocations within 
the pile-up leading to large elastic interactions 
between neighboring dislocations, dislocations with a 
small thermally induced offset from the glide plane 
(jog) in the y-directions can climb rapidly and escape 
from the pile-up. These dislocations may then form 
another parallel pile-up against the same dispersoid 
(a case not treated here) or may join another existing 
pile-up at another dispersoid, as discussed in more 
detail in Section 3.4. 

3.3. Threshold stress 

The tensile pile-up stress, calculated numerically 
from equation (23) with the stress field for walls 
[equation (15)], is plotted as a function of the number 
of dislocations in the pile-up in Fig. 6 for different 
numbers of dispersoids P being cooperatively 
bypassed and for a range of temperatures and stresses 
relevant to the experimental data for the Al-Al103 
system presented in the companion article [17]. We 
discuss here the three general trends apparent from 
Fig. 6 and give in Ref. [ 171 a quantitative comparison 
between model prediction and experimental data. 

First, the magnitude of the shear stress upon the 
detaching dislocation at the origin [equation (15)] is 
very sensitive to the position of the mobile dislocation 
walls with y # 0. This is because the sign of the stress 
upon the detaching dislocation from each of the 
climbing, mobile dislocations varies rapidly from 
positive (attractive interaction for 0 < x, < d/2) to 
negative (repulsive interaction for d/2 < x, < d). 

Second, the pile-up stress 6, increases as P 
increases, i.e. as the dispersoid climb process becomes 
more cooperative. For P = 1, corresponding to local 
climb where the dislocation threads between each 
dispersoid, op is negative because the magnitude of 
the negative forward stress [equation (20)] is larger 
than that of the positive backstress [equation (19)]. 
This is because a large fraction of the dislocation line 
length (1 - d/L = 0.22 for P = 1) is in the interdis- 
persoid region where the pile-up stress 5; [equation 
(21)] has the same sign as the applied shear stress. The 
detaching dislocation is then subjected to a total 
negative pile-up stress acting in the direction of the 
negative applied stress o and the effective threshold 
stress [equation (24)] is lower than predicted based 
solely on the detachment value [equation (5)]. 
However, climb rather than detachment becomes the 
controlling threshold mechanism if the effective 
threshold stress drops below the climb threshold 
stress (which must also be corrected by considering 
pile-up stresses). For P > 1, o,, is positive as the 
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magnitude of the backstress [equation (19)] is larger 
than that of the forward stress [equation (20)]. 
Thus, the effective threshold stress is larger than 
expected from the detachment value, because the 
detaching dislocation is subjected to a positive total 
pile-up stress which opposes the negative applied 
stress. 

Third, the pile-up stress is relatively constant for 
2 < N < 6 when climb is cooperative (P > I), 
because, as N increases, the increase in backstress is 
nearly compensated by an increase in forward stress. 
For N > 6, however, the pile-up stress magnitude 
increases significantly, while for N = 1, the value of 
the pile-up stress is assumed to be zero, as expected 
from the symmetry of the model. Finally, for values 
of N below unity (i.e. volume fractions of fine 
dispersoids below about lo%, Fig. 4), the stress fields 
from the individual dislocations are also expected to 
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0 -____________ 
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Fig. 6. Tensile pile-up stress crp as a function of the number 
N of dislocations interacting with each dispersoid calculated 
from equation (23) in dispersion-strengthened aluminum 
(Table 1). (a) T= 4OO”C, CT = 64 MPa; (b) T = 45O”C, 

d = 50 MPa. 
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Fig. 7. Pile-up stress (normalized by the Orowan stress) in 
dispersion-strengthened aluminum (Table 1) as a function of 
the dispersoid volume fractionf for two values of diameter 
d at T = 400°C with an applied stress of 60% of the Orowan 
stress. Arrows indicate the volume fractionf for which the 
pile-ups contain N = 1 dislocation and below which 
the pile-up stress is zero. (a) Local climb (P = 1); 

(b) cooperative climb (P = 5). 

cancel each other on average, as tacitly assumed in 
the existing models reviewed in the Introduction. 

Figure 7(a, b) shows the dependence of the pile-up 
stress Q, (normalized by the Orowan stress oar) on the 
dispersoid volume fraction for dispersoid diameters 
d = 0.28 pm (typical of materials investigated in the 
companion article [17]) and d = 50 nm (typical of 
SAP and MA materials) at a temperature of 400°C 
(T/T,,, = 0.72) and an applied stress c = 0.6.0,,. For 
low volume fractions, the pile-up stress is zero, 
because N is less than unity. If climb is local [P = 1, 
Fig. 7(a)], the pile-up stress is in the direction of the 
applied stress (negative values of o,/a,,), except for 
low volume fractions of the fine dispersoids and high 
volume fractions of the coarse dispersoids. If, as 
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expected for high dispersoid volume fractions, 
climb occurs cooperatively over groups of disper- 
soids [P = 5, Fig. 7(b)], the pile-up stress [equation 
(23)] is positive as it opposes the applied stress and 
thus increases the effective threshold stress 
[equation (24)]. 

The trends in Fig. 7(a, b) are now discussed by 
examining the factors that influence the number 
and positions of the pile-up dislocations. For a 
constant value of CT/(T,,, the number N of dislo- 
cations (of length L) per dispersoid increases both 
with increasing volume fraction f and with increas- 
ing dispersoid diameter d [equation (lo), Figs 3 and 
41. Therefore, for P > 1, the magnitude of gp/cror 
is expected to increase with increasing volume 
fraction more rapidly for large dispersoids than 
for small ones. The magnitude of the pile-up 
stress up is, however, higher for small dispersoids, 
because the Orowan stress CT,, is higher than for 
larger dispersoids [equation (3)]. Values of gp/cror 
above unity may not be physically relevant, since, 
when the effective detachment threshold stress 
[equation (24)] becomes larger than the threshold 
stress for bypass by bowing or shearing, these 
alternate bypass mechanisms control creep. 
However, the threshold stresses for these mechan- 
isms must also be corrected for the presence of 
pile-ups, a task which is not attempted in the 
present paper. 

The dispersoid diameter has two further effects 
upon the dislocation positions and thus the pile-up 
stress. First, for a given equilibrium x-coordinate 
[determined for a pile-up of walls in the same glide 
plane, equations (12) and (16)], the y-coordinate is 
smaller for fine dispersoids than for large ones 
[equation (18a)]. Thus, for dislocations with equi- 
librium positions on the interval 0 < x < d/2 
(which exert an attractive force on the pinned 
dislocation), this attraction will be larger for fine 
dispersoids than for coarse ones. Second, the 
dispersoid diameter determines the number of 
dislocations with non-zero y-coordinates [equation 
(18a)]. Since the sign and magnitude of the stress 
field is sensitive to the value of the y-coordinate, 
the final pile-up stress can be strongly influenced by 
the dispersoid size. 

3.4. Activation energy 

Most experimental studies of dispersion-strength- 
ened alloys report an apparent creep activation 
energy Q ’ [equation (l)] much larger than the matrix 
activation energy Q [equation (2)]. The apparent 
activation energy is defined as 

d(ln ;) 
Q’ = -R d(llT) [ 1 (25) 

~=COnSL 

which, using the modified power-law equation (2) 
gives [2]: 

Q’=Q-RT+F -FT (n-1) 
( ) 

+ 

taking into account the temperature dependence of 
the constant A’. As reviewed in the Introduction, the 
athermal threshold stress for low dispersoid volume 
fractions can be expressed as a fraction of the 
Orowan stress: 

gth = CL. aor (27) 

where C, is a temperature-independent constant 
less than unity. For example, if the threshold 
stress is detachment controlled [equation (5)], 
CI = ((1 - k2)li2. Since the only temperature-depen- 
dent term in the Orowan stress [equation (3)] is the 
shear modulus, it follows from equation (27) that: 

1 ch 1 dG --=__ 
a,h dT G dT’ (28) 

Introducing equation (28) into equation (26) and 
rearranging yields: 

The corrective second term in equation (29) is, 
however, typically too small to account for the 
observed discrepancy in activation energy Q ’ - Q, so 
that a stronger temperature dependence of the 
threshold stress is often postulated. However, no 
mechanism for this strong temperature dependence is 
proposed in existing models, except in a recent paper 
by Pichler and Arzt [31] who considered jog 
nucleation with and without thermal activation as the 
controlling mechanism for dispersoid bypass by 
climb. 

In the present model for dispersion-strengthened 
metals with N > 1, another possible mechanism can 
be identified. Because both jog nucleation rate and 
dislocation climb velocity increase with increasing 
temperature, dislocations within a pile-up will tend to 
escape the pile-up by climb (as described in Section 
3.2) more readily as temperature increases. The total 
number of dislocations within each pile-up and thus 
the pile-up stress are then reduced. The magnitude of 
the total threshold stress [which is the sum of the 
athermal detachment threshold stress adet and the 
pile-up stress bp, equation (24)] will then also decrease 
with increasing temperature. The pile-up stress can 
also be written as a fraction of the Orowan stress: 

ap = CZ.aor. (30) 

If C, is independent of temperature, the apparent 
activation energy is given by equation (29). If, 
however, CZ is temperature dependent, a new 
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apparent activation energy Q” is found by using 
equations (24) and (30) to evaluate equation (26): 

p,-RT[l+gg(n&- 1)] 

- nRT2 - - cror dCz (31) 
d--th dT’ 

As illustrated in Fig. 7, the constant CZ (which also 
depends upon dispersoid geometry and volume 
fraction, applied stress, etc.) decreases as the number 
of dislocations in the pile-up decreases. Thus C, is 
also expected to decrease with increasing tempera- 
ture, so that equation (31) predicts Q” > Q’. 
Quantitative comparison between equation (3 1) and 
experimental data is presented in the companion 
article [ 171. 

4. SUMMARY 

The present paper examines the effect of high 
volume fractions of dispersoids upon the detachment 
of dislocations pinned at dispersoids, which often 
controls the threshold stress and thus the creep 
properties of dispersion-strengthened alloys, charac- 
terized by high stress- and temperature sensitivities of 
the minimum strain rate. 

??When the dispersoid volume fraction is above a 
critical value, the number N of dislocations 
interacting with each dispersoid is larger than 
unity. Dislocation pile-ups are then expected to 
form at dispersoids, thus affecting the effective 
shear stress to which the detaching dislocations 
pinned at the dispersoids are subjected. 

??The positions of the dislocations in pile-ups are 
calculated by considering the equilibrium of walls 
of dislocations in a repeating unit cell. The shear 
stress of these dislocations are summed into a 
pile-up stress acting upon the detaching dislo- 
cations at the dispersoid. This pile-up stress is 
then added to the detachment threshold stress 
calculated for low volume fractions of dispersoids 
(N < 1). 

??The magnitude and sign of the pile-up stress 
depend upon the number of dislocations in the 
pile-ups (determined by the dispersoid volume 
fraction and diameter), the positions of the 
dislocations within the pile-ups (determined by 
the dispersoid diameter and shape, the applied 
stress and the temperature) as well as the number 
P of dispersoids being bypassed in a cooperative 
manner (the only adjustable parameter in the 
model). The effect of these parameters on the 
threshold stress are illustrated for the AI-A&O, 
system, and compared to experimental data in 
the companion article [17]. 

??For metals with high volume fractions of 
dispersoids, the corrected threshold stress is 
usually higher than predicted by existing models 3< __. 

for N < 1, valid for low dispersoid volume 
fractions. Furthermore, the number of dislo- 
cations in the pile-up can decrease with increasing 
temperature, leading to an increase in the 
temperature dependence of the threshold stress 
and an increase in the apparent activation energy 
for creep. 
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