Erratum

Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys
[Acta Materialia 50(16), pp. 4021–4035]☆

Emmanuelle A. Marquis, David N. Seidman *, David C. Dunand

Department of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA

In the final printed issue, the Publisher regrets to inform that the sequence of authors’ names given under the title on page 4021 was incorrect. The correct sequence is now shown above.

The Publisher also wishes to apologise for the poor quality reproduction of Figs. 1, 9 and 10, which are now reprinted correctly below:

☆ Corresponding author. Tel.: +1-847-491-4391.
* PII of original article S1359-6454(02)00201-X.
E-mail address: d-seidman@northwestern.edu (D.N. Seidman).

1359-6454/03/$22.00 © 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
doi:10.1016/S1359-6454(02)00496-2
Fig. 1. Dark-field TEM micrographs: (a) Al-0.3 wt.% Sc alloy aged at 300°C for 72 h; (b) Al-0.3 wt.% Sc alloy aged at 400°C for 5 h; (c) Al-0.1 wt.% Sc alloy aged at 300°C for 72 h; and (d) coherency strain contrast in the Al-0.2 wt.% Sc alloy aged at 300°C for 72 h (a-c) using the (100) reflection and (d) employs a two-beam condition using the (200) reflection.

Fig. 9. TEM micrographs of: (a) dislocation structure after ambient temperature compression to 20% strain for an Al-0.3 wt.% Sc alloy aged at 300°C for 5 h with fine precipitates ($r = 1.4$ nm) -- pairs of dislocations are marked with arrows; and (b) same alloy aged at 300°C for 5 h and at 400°C for 3 h with coarser precipitates ($r = 5.9$ nm) -- dislocation loops around precipitates are marked with arrows.
Fig. 10. TEM micrographs of post-creep dislocation structures: (a) Al-0.3 wt.% Sc alloy aged at 300°C for 5 h, crept at 300°C under 22 MPa showing subgrain walls; and (b) Al-0.3 wt.% Sc alloy aged at 300°C for 5 h and 400°C for 7 h and then crept at 300°C under 36 MPa, exhibiting no subgrain structure.