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Abstract

The aim of the present paper is to give a general method allowing us to devise maximum-likelihood multiplicative
algorithms for inverse problems, and particularly for signal and image restoration with non-negativity constraint. We
consider the case of a Gaussian additive noise and that of a Poisson process. Themethod is founded on the Kuhn}Tucker
"rst-order optimality conditions and the algorithms are developed to satisfy these conditions. The proposed method can
be used for any convex function whose de"nition range includes the domain of constraints. It allows to obtain generalized
forms of classical algorithms (ISRA and RLA) and to unify the method for obtaining these algorithms. We give relaxed
forms of the algorithms to increase the convergence speed; moreover, the e!ect of the constraints is clearly shown. For
a better understanding of the method to take into account the constraints, we express the non-negativity constraint using
di!erent functions and we reach a large class of algorithms that can be analyzed as descent algorithms. Then, we can
justify and analyze the behavior of several algorithms suggested in the literature. The particular displacement directions
appearing in such algorithms are evidenced and the convergence speed is analyzed. The algorithms are applied for
simulated data, to a two-dimensional deconvolution problem, to show their performance and e!ectiveness. A support
constraint is taken into account implicitly in the algorithms. Our method can be extended to more general hard
constraints on the extreme values or on the support of the solution and a regularization of the problem can be easily
introduced in the method. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The image restoration problem consists in the
reconstruction of the best estimate of an object `xa
from the knowledge of a blurred image `ya con-

taminated by noise. In the case of a general inverse
problem, the transformation su!ered by `xa is de-
scribed by a Fredholm integral equation of the "rst
kind:

y� (r)"� h(r, �)x(�) d�, (1.1)

where y� (r) is the noiseless blurred signal. Here, the
kernel h(r, �) will be assumed positive. If the kernel
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h is space invariant, (1.1) becomes

y� (r)"� h(r!�)x(�) d�, (1.2)

i.e. a convolution equation for which `ha is referred
to as the point spread function (PSF).
The algorithmic methods and results presented

here are developed within the general inverse prob-
lem framework described by (1.1), whereas the de-
convolution problem (1.2) is addressed to check the
algorithms.
In any case, we seek to estimate `xa from a noisy

version `ya of y� . This is an ill-posed problem in the
sense of Hadamar, and the di$culties speci"c to
such problems have been extensively described in
the literature [2}4,11]. A prior knowledge of the
properties of the admissible solutions is required to
obtain stable and physically suitable results. For
the image deconvolution problem, the classical
constraint concerns the non-negativity of the solu-
tion; such constraint has been frequently analyzed
in the literature [31,35,37}39].
A general method that can be mentioned is the

projection onto convex sets (POCS). This well-
known approach (see for example [43,8] and refer-
ences therein) was applied to the Poisson noise case
by Stark et al. [36]. However, it gives rise to some
di$culties in the de"nition of the projections con-
nected to the likelihood, and the corresponding
algorithms are not multiplicative.
Beside this method, most of the signal restora-

tion iterative multiplicative algorithms proposed in
the literature are founded on an explicit likelihood
maximization [23,44]. Our method is developed in
this context for two classical processes, the Poisson
process and the additive zero mean, white Gaussian
noise. The main objectives of our paper are to
propose a general method to devise the algorithms
for likelihood maximization under constraint of
non-negative solutions and to show how to express
these algorithms in a multiplicative form [17].
We focused on the multiplicative algorithms be-

cause they take a very simple form clearly ensuring
the non-negativity of the solution, and because
a support constraint on the solution is implicitly
taken into account. Moreover, their convergence
does not require speci"c procedures. On the other
hand, in the classical form of the algorithms, the

convergence speed is "xed, and an acceleration
method can be useful. From a general point of view,
their obvious simplicity and the absence of a
general method to devise them, make di$cult an
analysis of their behavior and a regularization
of the problem.
The approaches already published are basically

di!erent in the two cases: for the Poisson process,
the Expectation-Maximization (EM) technique
[12,20] is always mentioned. It leads to the
Richardson}Lucy algorithm [28,32], well known in
the "elds of astrophysics and medical imaging. For
the Gaussian noise, Daube-Witterspoon and
Muehlenner [10] proposed on an intuitive basis,
the Image Space ReconstructionAlgorithm (ISRA),
extending the works of Chahine [7] and Gold [18].
For both the noise processes, we are faced to the

problem of minimization of a functional J(x) de-
pending on the particular noise process, with a con-
straint for non-negative solutions.
In the Gaussian case, a frequently used technique

is based on the projected iterative descent method
(see for example [21,22] and references therein).
This method gives good results because the de"ni-
tion range of corresponding functional is un-
bounded. Consequently, in the "rst step of the
method (unconstrained minimization), the solution
`xa can be searched for out of the domain of the
constraints, then projected on this domain. Evi-
dently, multiplicative algorithms cannot be ob-
tained by such a method.
On the contrary, for the Poisson process, we

emphasize the fact that this procedure cannot
be used. Indeed, the de"nition range of the objec-
tive function used in that case is bounded. With the
procedure previously de"ned, there is a risk, during
the step of unconstrained minimization, to go out-
side the domain of de"nition of the objective func-
tion. In this case evidently, the method fails.
Fortunately, in all the cases considered here, the

domain of the constraints is completely included in
the de"nition range of the objective function, then if
the solution is searched for inside the constraints
range, the objective function remains always
de"ned.
Founding on these considerations, we propose to

devise the algorithms following the general rule: at
each step of the iterative method, the constraints
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must be taken into account "rst. Only after that,
the descent step can be performed to compute the
best estimate in the space of constrained solutions.
Although the solution space is reduced by the

constraints, the problem is ill-posed, and a regular-
ization by a smoothness constraint remains neces-
sary. In the present paper, we do not consider such
a problem that will be treated elsewhere. We use
simulated data, and the optimal iteration number is
merely determined by comparison with the true
solution.
For the sake of clarity, we use the matrix nota-

tion corresponding to the discrete problem. Eqs.
(1.1) and (1.2) are then written in the form of the
linear system y� "Hx; the matrix H has positive
terms and no supplementary assumption is made to
preserve the generality of the results. Indeed, al-
though numerical illustrations are given for a de-
convolution problem, that is in the space invariant
case, the analysis in matrix form obviously holds
for general space variant inverse problems.
This paper is organized as follows. In Section 2,

after a brief recall of the basic principle of con-
strained minimization, we develop the general
method to obtain iterative multiplicative algo-
rithms for minimization of a convex functional J(x)
with non-negativity constraints. The method is ap-
plied to the Poisson process in Section 3 and to the
Gaussian noise process in Section 4. In this section,
we propose an algorithm for which the relaxation
plays a major role. Section 5 is devoted to a few
remarks on the properties of these algorithms. In
Section 6, the particular features connected to the
non-negativity constraint are evidenced, and we
show that faster multiplicative algorithms can be
derived if the same constraints are expressed di!er-
ently. Illustrations are given in Section 7 for a two-
dimensional image deconvolution problem, and the
speed-up e!ects due to the relaxation are analyzed
for di!erent types of images. Conclusions are given
in Section 8.
In Appendix A, we develop a general method for

obtaining the accelerated algorithms given in Sec-
tion 6, while Appendix B is devoted to a formal
comparison with Rosen's [1] projected gradient
method. We show that the proposed algorithms
can be considered as a weighted version of this
method, or more generally as a projected descent

direction method. The di!erent forms of the algo-
rithms are summarized in Appendix C.

2. The general algorithmic method

The general problem can be stated as

J(x) is a convex function
Minimize/x : J(x)
with the constraint x*0,

x* is a solution of this problem if and only if the
Kuhn}Tucker "rst-order optimality conditions
[1,29] are veri"ed at x*.
We propose to devise algorithms based on these

conditions. Let ¸(x, �) the Lagrange function asso-
ciated to this problem, in the case of constraint for
non-negative solutions, this function is expressed as

¸(x, �)"J(x)!(�, g(x)), (2.1)

where � is the Lagrange multipliers vector, with
components �

�
*0 ∀i; (�, g(x)) represents the inner

product; g(x) is a function expressing the con-
straints, it must be increasing and positive when the
constraints are inactive (x'0) and zero for active
constraints (x"0), moreover the zeros of
g
�
(xH)/[�g(xH)]

�
must be the same than those of

g
�
(xH).
The Kuhn}Tucker conditions at the optimum

xH, �H are [1,29]:

�
�
¸(xH, �H)"0

� �H
�
[�g(xH)]

�
"[�J(xH)]

�

� �H
�
"

[�J(xH)]
�

[�g(xH)]
�

∀i, (2.2a)

g(xH)*0� g
�
(xH)*0 ∀i, (2.2b)

�H*0� �H
�
*0 ∀i, (2.2c)

�H
�
g
�
(xH)"0�

[�J(xH)]
�

[�g(xH)]
�

g
�
(xH)"0 ∀i. (2.2d)

Taking into account the properties of g(x), this last
equation reduces to

[�J(xH)]
�
g
�
(xH)"0 ∀i. (2.2e)
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Conditions (2.2d) and (2.2e) represent, in fact, two
complementary conditions:

�H
�
"0,

[�J(xH)]
�

[�g(xH)]
�

"0 if g
�
(xH)'0

� Inactive constraint, (2.3a)

�H
�
'0,

[�J(xH)]
�

[�g(xH)]
�

'0 if g
�
(xH)"0

�Active constraint. (2.3b)

The function g(x) used to express the constraints is
of fundamental importance for the "nal form of the
algorithm. In the simplest case, we can choose
g(x)"x� g

�
(x)"x

�
∀i.

To solve (2.2d) and (2.2e), we take into account
the fact that !�J(x) is a descent direction for the
unconstrained problem [29], and we use the suc-
cessive substitutions method [41] to write the algo-
rithm in the general gradient form

x�����
�

"x���
�

#����
�

f
�
(x���)x���

�
[!�J(x)]

�
, (2.4)

where ����
�

'0 is a relaxation factor, and f
�
(x���) is

a function having positive values when x��� satis"es
the constraints; this function will depend on the
form of J(x) and g(x), and of the particular proper-
ties wanted in the algorithm, mainly a multiplica-
tive form. The function f

�
(x���) will be explicitly

written for each case developed in this paper.
Algorithm (2.4) can be written in such a form

only because the constraints are in a simple linear
form that allows us to obtain an explicit expression
of the Lagrange multipliers (2.2a). Relation (2.4) is
the basic form we shall use when the function g(x)
will be changed to express the same constraints.
The relaxation of the algorithm allows a control

of the convergence speed and gives a simple solu-
tion to the problem of acceleration of the algo-
rithms frequently mentioned in the literature
[5,19,30].
We now analyze the convergence properties of

(2.4) toward a solution for which all the KT condi-
tions (2.2b) and (2.2c) are veri"ed.
Condition (2.2b) imposes restrictions on the step-

size; indeed to retain the generality of the argumen-
tation we consider that J(x) is not necessarily
de"ned for all the values of `xa, but that it is always

de"ned in the domain of the constraints. Therefore,
condition (2.2b) must be imposed "rst; this condi-
tion is ful"lled if at each iteration, we have
x�����
�

*0 ∀i, when x���
�

*0 ∀i, that is, from (2.4):

1#����
�

f
�
(x���)[!�J(x���)]

�
*0 ∀i. (2.5)

For ��J(x���)�
�
(0 condition (2.5) is always satis-

"ed. The non-negativity does not introduce any
restriction on the stepsize.
For [�J(x���)]

�
'0 we must have for each corre-

sponding index `ia:

����
�

)

1

f
�
(x���)[�J(x���)]

�

. (2.6)

We have then a set of the maximal values of the
stepsize ensuring the ful"llment of the constraints
for each component separately.
The maximum stepsize ����

�
, independent of `ia,

for a non-negative solution will be given by

����
�

"Min/i
1

f
�
(x���)[�J(x���)]

�

∀i

such that [�J(x���)]
�
'0 and x

�
'0.

(2.7)

Concerning the convergence, the optimal stepsize
����
�

independent of `ia, must be computed by a line
search procedure [1], in the interval ]0, ����

�
], in the

direction:

d���"diag[ f
�
(x���)]diag[x���

�
][!�J(x���)]. (2.8)

This direction is no longer the negative gradient
but it remains a descent direction for J(x). The
general algorithm can then be written in the form

x�����"x���#����
�

d���. (2.9)

Proceeding in such a way we are ensured that the
algorithm converges and that the solution is never
searched for out of the de"nition range of J(x).
Finally, the KT conditions (2.3) are satis"ed

since:

� if the solution xH
�
'0 then, from (2.4), clearly

�J(xH)"�H,0,
� if xH

�
"0 and [�J(xH)]

�
(0 we arrive to a con-

tradiction because �1#����
�

f
�
(x���)[!�J(x���)]

�
�

will be greater than `1a in the neighborhood of
xH and we can never reach the solution.
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The procedure described above constitutes the
basis of the method we develop in the following
sections for the two basic cases: the Poisson process
and the Gaussian additive noise.

3. Poisson noise process

For a perfect photon detection, the intensity in
the pixel `ia is a random variable that follows
a Poisson law of mean (Hx)

�
. The likelihood can be

written as [27]

¸(x)"P(y/x)"�
�

[(Hx)
�
]��

y
�
!

exp[!(Hx)
�
], (3.1)

where (Hx)
�
"�

�

h
��
.x

�
.

Using Stirling's formula, the negative Log-likeli-
hood becomes

¹(x)"!Log[¸(x)]

+�
�

[(Hx)
�
!y

�
]#y

�
Log

y
�

(Hx)
�

. (3.2)

This function is known as the CsiszaK r [9] I-
divergence measure between (Hx) and y. This
measure generalizes the Kullback divergence or
cross-entropy measure to accommodate functions
whose integrals are not constant, as they would be
if they were probability distributions [6]. Dropping
in ¹(x) the terms independent of `xa, the problem
can be formulated as

Minimize/x :D(x)"�
�

(Hx)
�
!y

�
Log(Hx)

�

with the constraint

x
�
*0 ∀i. (3.3)

The functional D(x) is de"ned only if
(Hx)

�
'0 ∀i. Clearly, because the elements of

H are positive,D(x) is always de"ned if x'0, this is
why, in the iterative method proposed, the non-
negativity condition will be imposed "rst. Only
then, we will compute the best estimate of the
solution.
We can easily obtain

�D(x)"H�diag[1/(Hx)
�
](Hx!y).

Following the method developed in Section 2,
with x

�
*0 ∀i, �

�
h
�� �

"a
�
'0, and f

�
(x)"1/a

�
,

we obtain from (2.4) the relaxed iterative algorithm:

x�����
�

"x���
�

#

����
�
a
�

x���
�
[H� diag[1/(Hx���)

�
]

�(y!Hx���)]
�
. (3.4)

Denoting for sake of clarity: y/Hx"

diag[1/(Hx)
�
]y, we can also write

x�����
�

"x���
�

#

����
�
a
�

x���
� �H��

y

Hx���
!1��

�

. (3.5)

Following (2.7), ����
�

will be given by [30]

����
�

"Min/i
a
�

a
�
![H�(y/Hx���)]

�

∀i,

such that a
�
![H�(y/Hx���)]

�
'0

and x���
�

'0.

(3.6)

Clearly ����
�

*1 ∀k, the exact value ����
�

must be
computed at each iteration step. The value of
����
�

must be computed by a line search procedure in
the range ]0, ����

�
], in the descent direction

d���"diag�
x���
�
a
�
��H��

y

Hx���
!1�� . (3.7)

Then, the algorithm can be written in the general
form (2.9).
In the particular case ����

�
"1 ∀k, the negative

term exactly cancels and algorithm (3.5) can be
written in a pure multiplicative form

x�����"diag�
x���
�
a
�
��H� diag�

1

(Hx���)
�
�y� (3.8)

or alternatively, in the form

x�����"x���#diag�
x���
�
a
�
�

��H�diag�
1

(Hx���)
�
�(y!Hx���)� . (3.9)

Moreover, in the deconvolution problems the
matrix H is such that a

�
"1 ∀i. It was shown in

[34] that with ����
�

"1 ∀k, the algorithm converges.
Algorithm (3.8) was proposed in astronomy by
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Richardson [32] and Lucy [28], or as the EM
method [12,34] in the "eld of Medical Imaging.
Obviously, all the successive estimates remain pos-
itive if the initial estimate is positive. Moreover, if
a component of the solution becomes equal to zero,
it remains equal to zero for all successive iterations.
The forms (3.4) or (3.9) allow an analysis of the

behavior of the algorithms in the context of the
descent methods. The components of the direction
of the displacement are the components of the
negative gradient weighted by the factors
�
�
"x���

�
/a

�
remains always positive or zero, so the

descent property of the algorithm is retained. The
proportionality of the weights �

�
with x���

�
is typical

of the positivity constraint and can be more clearly
understood if x���

�
is considered as (x���

�
!0), the

distance between the current estimate and the
constraint.

4. Gaussian noise

In this case, following for example Llacer and
Nun� ez [27] or Katsaggelos [21], we consider that
the data `y

�
a are independent random variables,

corrupted by an additive, zero-mean, white Gaus-
sian noise `na, with variance 	

��
. The image forma-

tion model may be written as y"Hx#n. For
a given pixel `ia, the data `y

�
a is the sum of a deter-

ministic part (Hx)
�
, which is the mean of the inten-

sity in the considered pixel, and of a random noise
component `n

�
a. The likelihood, that is the condi-

tional probability to have data `ya knowing the
mean `Hxa is given by

¸(x)"P(y/x)

"�
�

1

	
�
�2�

exp[!(y
�
!(Hx)

�
)�/2	�

�
]. (4.1)

The corresponding Log-likelihood is then

Log[P(y/x)]"C!

1

2
�
�

(y
�
!(Hx)

�
)�/	�

�
, (4.2)

dropping the additive constant C, the maximiza-
tion of the likelihood is equivalent to the minimi-
zation of

G(x)"
1

2
�
�

[y
�
!(Hx)

�
]�/	�

�
"

1

2


y!Hx

�

	
, (4.3)

where �� represent the Euclidean norm and where
R is the weighting diagonal matrix:

R"diag�
1

	�
�
� . (4.4)

Such functional G(x) is de"ned for all values of `xa,
then all the methods indicated in Section 1 [22] can
be used to impose the non-negativity constraint;
however, only the method proposed here allows to
reach the multiplicative form of the algorithms.
We have

�G(x)"H�RHx���!H�Ry. (4.5)

Following the method developed in Section 2, we
use in the simplest case f

�
(x���)"1 ∀i, k, and then

the algorithm deduced from (2.4) writes

x�����
�

"x���
�

#����
�

x���
�
(H�Ry!H�RHx���)

�
. (4.6)

In this form, we observe that the components of the
displacement are the components of the negative
gradient, weighted by the positive factors:
����
�

"x���
�
.

From (2.7), we have

����
�

"Min/i
1

(H�RHx���!H�Ry)
�

∀i

such that x���
�

'0

and [�G(x���)]
�
'0.

(4.7)

The optimal stepsize ����
�

is computed by line search
in the range ]0, ����

�
] in the direction

d���"diag[x���
�
](H�Ry!H�RHx���). (4.8)

The algorithm can be written in the general form
(2.9).
In our problem, the matrix H and R have posi-

tive entries, and all the components of the initial
estimate have positive values to satisfy the con-
straint, then we have [H�RHx���]

�
*0 ∀i, k. With

the aim to obtain multiplicative algorithms, we use
for f

�
(x���) the particular function

f
�
(x���)"

1

[H�RHx���]
�

. (4.9)
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The relaxed algorithm then becomes from (2.4):

x�����
�

"x���
�

#����
�

x���
�

[H�RHx���]
�

�(H�Ry!H�RHx���)
�
. (4.10)

The components of the displacement are now, the
components of the negative gradient, weighted by
the positive factors

����
�

"

x���
�

(H�RHx���)
�

. (4.11)

We can also write for later use

x�����
�

"x���
�

#����
�

x���
� �

(H�Ry)
�

(H�RHx���)
�

!1� . (4.12)

If the relaxation factor is computed so that the
successive estimates remain positive, we will have
����
�

*0 ∀i, k, and the descent properties of the algo-
rithm are preserved.
The particular choice of f

�
(x���) can now be clearly

understood: it allows us to obtain a form similar to
(3.5). However, the form (4.12) allows a simple anal-
ysis of the behavior of the algorithm concerning the
non-negativity of the solution.
In the general case, from (2.7), ����

�
is computed as

����
�

"Min/i�
1

1!([H�Ry]
�
/[H�RHx���]

�
)� ∀i

such that [[H�RHx���!H�Ry]
�
'0]

�
'0

and x���
�

'0.

(4.13)

This value is always higher or equal to 1, therefore,
an acceleration of the algorithm can be expected if
the optimal value of the stepsize ����

�
is computed by

line search in the range ]0, ����
�
], in the direction

d���"diag�
x���
�

[H�RHx���]
�
�(H�Ry!H�RHx�).

(4.14)

The algorithm can be written in general form (2.9).
In the particular case ����

�
"1 ∀k, the negative

term in (4.12) is exactly canceled and we obtain ∀i

x�����
�

"x���
�

[H�Ry]
�

[H�RHx���]
�

. (4.15)

This purely multiplicative algorithm called Image
Space Reconstruction Algorithm (ISRA) was

initially proposed in the literature by Daube-
Witherspoon and Muehllehner [10]. Its conver-
gence was analyzed later by De Pierro [13}15] and
Titterington [40].

5. Remarks about these algorithms

(1) The algorithms in the forms (3.4) and (4.10) for
Poisson and Gaussian noise, respectively, show the
similar roles played by the matrix diag(1/(Hx���)

�
)

and by the weighting matrix R"diag(1/	�
�
). These

quantities both correspond to variances of the sig-
nal. For the Gaussian process, 	�

�
is the variance of

the intensity in a pixel. For the Poisson process, the
mean (Hx���)

�
also represents the variance of the

signal.
(2) In the Gaussian case, the minimization with-

out constraints of the quadratic form G(x) leads to
linear algorithms, thus the non-linearity in algo-
rithms (4.6) and (4.10) is due only to the non-
negativity constraint.
On the contrary, in the Poisson case, the func-

tional D(x), although convex, is not quadratic.
Thus, the non-linearity of RLA and related algo-
rithms is due to the particular form of D(x) as well
as to the constraint used here.
(3) For all the algorithms, we set the initial esti-

mate to a constant value

x���
�

"

�

���

y
�

N
∀i (5.1)

where N is the number of pixels in the image;
moreover, the integral of the image is generally
normalized to 1. We must observe that in RLA we
have for all k, �

�
x���
�

"�
�
y
�
. This is due to the fact

that the functional D(x) implicitly contains the con-
stant intensity constraint �

�
[(Hx)

�
!y

�
]"0 to-

gether with �
�
h
��

"a
�
"1. This later property

appears naturally for the PSF in a deconvolution
problem or can be imposed in the algorithm by
means of the normalization factor a

�
.

For ISRA, such properties do not exist, so that
normalization must be performed after each
iteration.
(4) In algorithms (3.4) and (4.10), the corrective

term added to the current solution value at each
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iteration is in the two cases of the form of a relative
error, that is
For (3.4)

x���
� �H��

y!Hx���

Hx��� ��
�

, (5.2)

For (4.10)

x���
� ��

H�Ry!H�RHx���

H�RHx��� ��
�

. (5.3)

In the "rst case, the relative error vector is com-
puted "rst then multiplied by H�, while the reverse
order occurs in the second case.
On the contrary, in (4.6), the corrective term is

x���
�
[H�Ry!H�RHx���]

�
. (5.4)

It has the form of an absolute di!erence. Compar-
ing (4.6) and (4.10), we can see that, if the relaxation
factor ����

�
is not considered, the weighting factors

applied to the components of the negative gradient
have very di!erent numerical values. We will show
in the following section, that the speed-up e!ect due
to the relaxation factor is much more important in
(4.6) than in (4.10), for all the examples we have
considered.
(5) In the general form (2.4), the global direction

of displacement d��� (2.8) is a descent direction since
all the terms multiplying the negative gradient are
positive.
The term diag[x���

�
] is due to the non-negativity

constraint; this remark can be extended to other
hard constraints (paper in preparation).We want to
emphasize the particular role of the function f

�
(x)

(cf. Section 2). In the Gaussian case, the particular
expression of f

�
(x) (4.9) allows proposing the algo-

rithm in the form (4.12). This form is very close to
that obtained directly from the Poisson process
(3.5) with a constant value for f

�
(x). With such

a choice, pure multiplicative forms are easily ob-
tained making ����

�
"1 ∀i, k. In this case, the

non-negativity of the solution is ensured, and the
convergence was demonstrated [13,34].
The exact expression of f

�
(x) clearly depends on

the function g(x) expressing the constraints and on
the objective function J(x). This is not obvious
when speci"c expressions of the negative gradient
are used. For a particular choice of f

�
(x���), the

descent direction at the current iteration step is
completely "xed, and the only possible acceleration
method is to optimize the descent stepsize in the
limits imposed by the constraints.
However, several algorithms suggested in the

literature use an implicit modi"cation of the func-
tion f

�
(x���) to increase the speed of the algorithm.

Among such attempts, we will mention that of
Zaccheo ant Gonzalvès [44] in which the non-
negativity of the solution is imposed by the variable
change x"u�. We will show in the next section,
how these algorithms can be obtained by changing
in our method the function g(x) expressing the
constraints and, as a consequence, a change of the
function f (x).
(6) These algorithms are not regularized. The

non-negativity constraint, although necessary, does
not produce smooth solutions. When the iteration
number increases too much, the classical phenom-
enon of noise ampli"cation appears in the solution.
From a practical point of view, the iteration num-
ber must be limited to obtain an acceptable com-
promise between resolution and stability of the
solutions; this allows some regularization.
In the present paper, we use simulated data to

test the algorithms, then a direct comparison of the
restored image with the true image allows us to
determine the optimal iteration number.
Recently [24}26], we proposed to use a Wiener
"lter as a reference to determine the optimal iter-
ation number in the restoration process or to deter-
mine the optimal regularization factor if explicit
smoothness regularization is introduced. In [33],
the Wiener "lter is used in a pre-"ltering procedure
before the regularized restoration. However, the
regularization is out of the scope of the present
paper, this point has been in part presented in
a recent communication [24] and will be analyzed
more deeply in a future paper.

6. In6uence of the function g(x). Accelerated
algorithms

In the previous sections, the non-negativity con-
straint is expressed using the function g(x)"x, we
show now that other functions can be used to this
end and that in so doing, we can obtain other
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multiplicative algorithms with higher convergence
rates.
Let us consider, for example, the case where

the non-negativity constraint is expressed using
the general function g(x)"x�	�. In the Poisson as
well as in the Gaussian case, if we denote ;(x���)
and <(x���), two positive functions ∀x���, we can
write

!�J(x���)";(x���)!<(x���). (6.1)

The KT condition (2.2e) writes

x�	�
�
[;(x)!<(x)]

�
"0. (6.2)

After some simple algebra detailed in Appendix A,
we obtain the general form of the accelerated
algorithm. The application to the Poisson and
to the Gaussian noise cases are summarized as
follows.

6.1. Poisson case

Denoting

;(x)"H�
y

Hx
and <(x)"a

�
, (6.3)

we have from (A.4):

f
�
(x���)"

1

a�
�
�
�
�
�

���

a�
� �H�

y

Hx����
�
�
�

�
� , (6.4)

instead of f
�
(x���)"1/a

�
as in Section 3.

The relaxed algorithm deduced from relation
(2.4) or (A.3), will be

x�����
�

"x���
�

#����
�

x���
�
a�
�
�
�
�
�

���

a�
� �H�

y

Hx����
�
�
�

�
�

���H�
y

Hx����
�

!a
��. (6.5)

From (A.7), the maximum step size for non-negativ-
ity is

����
�

"Min/i
a�
�

a�
�
!(H�(y/Hx���))�

�

∀i,

such that [�D(x)]
�
'0 and x

�
'0.

(6.6)

The value of the optimal stepsize ����
�

must be com-
puted by a line search procedure in the
range]0,����

�
] in the direction deduced from (A.8):

d���"diag�
x���
�
a�
�
�
�
�
�

���

a�
� �H�

y

Hx����
�
�
�

�
��

���H�
y

Hx����
�

!a
��. (6.7)

The descent direction as well as the magnitude of
the descent vector are modi"ed in comparison with
the basic algorithm (3.5). Close to the convergence,
the magnitude is multiplied by `na.
In the unrelaxed case, that is ����

�
"1 ∀k, we

obtain ∀i, a multiplicative algorithm:

x�����
�

"

x���
�
a�
�
�H�

y

Hx����
�

�

. (6.8)

In the particular case of the deconvolution problem
we have also a

�
"1 ∀i.

The origin of the algorithms proposed by
Zaccheo and Gonsalves [44] and by Llacer and
Nun� ez [27] is then fully evidenced by our method
as well as the basis of the technique they use to
speed-up the algorithms. The convergence of algo-
rithm (6.8) was not demonstrated, but in all exam-
ples shown in the following section, we do not
observe any divergence in the case n"2. For n'2,
to avoid divergence problems, the general relaxed
form (6.5) can be used.

6.2. Gaussian case

If the data `ya are such that H�Ry*0 (if such is
not the case, the data must be shifted toward posi-
tive values), we have

;(x)"H�Ry, <(x)"H�RHx (6.9)

and

f
�
(x���)"

1

(H�RHx���)�
�

��
�
�
�

���

(H�RHx���)�
�
(H�y)�
�
�

� �. (6.10)
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The relaxed algorithm deduced from (2.4) or (A.3)
writes

x�����
�

"x���
�

#����
�

x���
�

(H�RHx���)�
�

��
�
�
�

���

(H�RHx���)�
�
(H�y)�
�
�

� �
�[H�Ry!H�RHx���]

�
. (6.11)

The maximum stepsize for non-negativity is then

����
�

"Min/i
1

1!(H�Ry/H�RHx���)�
�

∀i,

such that[�G(x)]
�
'0 and x

�
'0.

(6.12)

The value of ����
�

must be computed by a line search
procedure in the range ]0,����

�
] in the direction

d���"diag�
x���
�

(H�RHx���)�
�

��
�
�
�

���

(H�RHx���)�
�
(H�y)�
�
�

� ��
��

H�Ry

H�RHx���
!1�. (6.13)

The descent direction used in ISRA (4.14) has been
changed as well as the magnitude of the descent
vector. The use of function (6.10) allows obtaining
in the unrelaxed case the multiplicative algorithm,
indeed if ����

�
"1 ∀k, we have ∀i

x�����
�

"x���
� �

H�Ry

H�RHx����
�

�

. (6.14)

As in the Poisson case, the convergence of this
algorithm was not demonstrated, but with n"2,
no divergence was observed in our examples. To
avoid divergence problems when n'2, the general
relaxed form (6.11) can be used.
In any case, the proposed method shows that

using di!erent forms of the function g(x) to express
the same constraints, we can reach a large class of
algorithms. Writing the algorithms in a modi"ed
gradient form, we fully justify the method suggested
in the literature to accelerate the basic algorithms
[27,44]. Indeed when we are close to the conver-
gence, the modulus of the descent stepsize is multi-

plied by `na when compared to the basic algo-
rithms, independently of the descent direction. For
all the images considered here, the convergence
occurs when n"2, with an acceleration factor of 2.
Unfortunately, the multiplicative algorithms (6.8)
and (6.14) diverges when n*3; however, in any
case, the convergence can be ensured using the
relaxed forms, with an appropriate computation of
the stepsize by line search. In the following section
we give only results in the unrelaxed cases for n"2
and we left for a future work a complete analysis of
the relaxation of these algorithms.

7. Numerical illustrations

We show in this section the results given by the
proposed algorithms in the case of an image decon-
volution problem. Our objective is to analyze the
behavior of the relaxed and `accelerateda algo-
rithms and to show in which situations an impor-
tant speed increase can be observed.
Two test images were used to check the algo-

rithms in two opposite situations; one is an astro-
nomical simulated image of 64�64 pixels, chosen
to represent an ensemble of three stars, with di!er-
ent diameters and centers to limbs variations.
A bright and dark sunspot-like feature is added to
the larger star's atmosphere; the features of this
image are the high range of intensity values and the
large number of zeros. The second image is the
image of LENA sampled on 128�128 pixels
apodized near the edges by a Gaussian function. It
is a smooth image with no zero values. Two PSFs
are used to blur these images, one is narrow to
simulate moderate blur, and the other is larger to
simulate severe blur. They are realistic representa-
tions of the PSF of a true telescope; indeed, they are
computed as the squared modulus of the Fourier
transform of a function representing the telescope
aperture with a small phase aberration. They may
correspond to observing conditions with the
Hubble Space Telescope operating in the far ultra-
violet. The resulting optical transfer functions are
then low-pass "lters, limited in spatial frequencies
to the extent of the aperture auto-correlation func-
tion. The observed "ltered images are then strictly
band limited. While these PSFs are evidently
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Fig. 1. Original images used in the numerical simulation (denoted x* in the paper). Left: 128�128 pixels image of Lena, apodized with
a Gaussian function. Right: 64�64 pixels image of a simulated astronomical object representing an ensemble of three stars, with various
center to limb variations and a bright structure on the larger star.

adapted to the astronomical simulated image, they
are also used to blur the image of Lena.
The corresponding data are represented in Figs.

1 and 2, for the two images.
The blurred signals are corrupted either by

a Poisson or by a Gaussian noise. For each blurred
image, three levels of noise are considered. From
a rigorous point of view, given a speci"c noise
(Gaussian or Poisson), a di!erent algorithm should
be used; however, we will show that within certain
limits, the result of the restoration is only weakly
dependent on the algorithm used.

7.1. Images corrupted by a Poisson noise

The blurred images corrupted by Poisson noise,
are represented in Figs. 3 and 4 and constitute the
data to be deconvolved by the di!erent algorithms.
The noise NS1 corresponds to 10� photons in the
images, that is to a very low noise level, the noise
NS2 corresponds to 10� photons in the images,
while noise NS3 corresponds to only 10 photons
in the images, that is, to very noisy data.
The results obtained with ISRA and RLA algo-

rithms in their di!erent versions (basic, relaxed or
accelerated, see Appendix C) are summarized

in Table 1. The iteration numbers given in this table
corresponds to the `besta image, that is to the
image for which the Euclidean distance 

x���!xH

�
is minimum (where x* stands for images 1a or 1b).
For a given set of data, corresponding to a row of
Table 1, we use the same noise realization, and then
we have the same noisy blurred image.

7.1.1. General remarks
The analysis of Table 1 leads us to di!erent

conclusions:
Inyuence of the strength of the blur: For a given

image, the iteration number is always greater in the
case of a severe blur, which is not surprising.
Inyuence of the algorithm (ISRA or RLA) used: The

number of iterations for ISRA is always greater
than or equal to that for RLA. The gain on the
iteration number is generally higher (or approxim-
ately the same) for RLA than for ISRA.
Inyuence of the noise level: When the noise level

increases, the iteration number corresponding to the
best image, decreases. The e!ectiveness of the relax-
ation procedure is small in the case of very noisy data.
Inyuence of the type of the image: For identical

blur and noise level, the astronomical simulated
image, that is a strongly contrasted image, requires
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Fig. 2. Images of Fig. 1 degraded by a moderate (left) and a severe (right) blur. From left to right and top to bottom: PSFs used for
blurring the images, noiseless blurred images of Lena and noiseless blurred images of the astronomical object.

in almost all case, more iterations than the image of
Lena. For RLA, the gain is generally more impor-
tant for the simulated image than for the Lena
image; the opposite e!ect occurs for ISRA, indeed,

for the simulated image, the relaxation of ISRA is
ine$cient (gain about 1).
Other remarks: The highest gains appear for RLA

in the case of the simulated image, for a severe blur,
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Fig. 3. Poisson statistics. Simulated noisy images of Lena. Top: moderately blurred image (Fig. 2c) observed with 10� (a), 10� (b) and 10
(c) photoelectrons per image. Bottom: severely blurred image (Fig. 2d) observed with 10� (d), 10� (e) and 10 (f ) photoelectrons per image.

for low or intermediate noise levels (rows 13 and 14
in Table 1).
In the case of accelerated algorithms with n"2,

the behavior is similar, whatever the origin of the
algorithm (Gauss or Poisson). The gain factor is
2 in almost all cases. The only exception is for the
noisy Lena image moderately blurred. In the
noisier case (NS3), these algorithms are slower than
the basic versions; this is probably because in these
algorithms, the term H�y appears in the descent
direction. This shows that such algorithms do not
permit in all cases a speed increase.

7.1.2. Ewects of various realizations of the noise
process
To avoid erroneous conclusions due to a unique

realization of the noise process, we have considered
in some typical cases of Table 1, an ensemble of
realizations for the same amplitude of the noise.

(a) Lena image: In the case of the Lena image
severely blurred, with an intermediate noise level
NS2 (row 5 of Table 1 and Fig. 3e), the conclusions
are the following:
For ISRA, the iteration numbers for the best

images are in the range of $10% of the values
indicated in Table 1, while the dispersion of the
gain factor is $3% for the relaxed algorithm.
There is practically no spread of the gain factor for
the accelerated algorithm.
For RLA, the results are similar in which con-

cerns the dispersion of the iteration number, while
the spread of the gain value is about $10% for the
relaxed algorithm. The observations concerning
the accelerated algorithm are the same as that for
ISRA.
(b) Simulated data: We proceed in the same

way for the astronomical-type simulated image se-
verely blurred with the noise level NS2 (row 14 of
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Fig. 4. Poisson statistics. Simulated noisy images of the astronomical object. Top: moderately blurred image (Fig. 2e) observed with 10�
(a), 10� (b) and 10 (c) photoelectrons per image. Bottom: severely blurred image (Fig. 2f ) observed with 10� (d), 10� (e) and 10 (f )
photoelectrons per image.

Table 1

ISRA RLA

Basic Relaxed Accelerated Basic Relaxed Accelerated
Row Noise

number Image PSF (NS) Ite. nb. Ite. nb. Gain Ite. nb. Gain Ite. nb. Ite. nb. Gain Ite. nb. Gain

1 Lena
image

Narrow 1 189 65 2.9 94 2 188 89 2.1 94 2

2 2 13 6 1.6 11 1.2 13 7 1.9 11 1.2
3 3 2 2 1 3 0.7 2 2 1 3 0.7
4 Large 1 1507 467 3.2 753 2 1137 456 2.5 568 2
5 2 38 11 3.4 19 2 39 16 2.4 19 2
6 3 4 3 1.3 2 2 3 3 1 3 1
7 Very

large
1 9842 3397 2.9 4920 2 5746 1792 3.2 2873 2

8 2 418 138 3 209 2 280 89 3.2 140 2
9 3 9 5 1.8 4 2.2 10 3 3.3 5 2
10 Simulated

data
Narrow 1 2743 2725 1 1371 2 1570 558 2.8 785 2

11 2 81 76 1.1 40 2 82 27 3 40 2.1
12 3 6 5 1.2 3 2 6 5 1.2 3 2
13 Large 1 54 636 54 597 1 27 319 2 14 420 2334 6.2 7210 2
14 2 634 625 1 317 2 295 42 7 147 2
15 3 17 15 1.1 8 2 16 6 2.6 8 2
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Fig. 5. Histograms of the various optimal iteration numbers (a) and acceleration factors (b) obtained with the RLA algorithm, for 20
di!erent noise realizations of the severely blurred astronomical object (see Table 1, row 14). Bar gray levels correspond to di!erent
versions of the algorithm: accelerated (black), relaxed (gray) or raw (white). The iteration number is 284$25 for the basic algorithm,
while it is 40$5 in the relaxed case (mean gain about 7). For the accelerated algorithm, the gain is 2, with a very low spread.

Table 1 and Fig. 4e), and the results are rather
di!erent:
For RLA, we show in Figs. 5a and b, respectively,

the histograms of the optimal iteration number and
of the acceleration factor, for various realization of
the noise at the same level. The relaxation e!ect is
particularly important in the case of the simulated
astronomical image severely blurred with a very
low noise, but we have not obtained the high-gain
values mentioned by White [42].

For ISRA, the dispersion of the iteration number
for the best image is $18%, for the basic as well as
for the relaxed algorithm. The gain factor is sharply
peaked to 1 for the relaxed algorithm (no relaxation
e!ect) and is always 2 for the accelerated.

7.1.3. Analysis of the reconstruction error and of
restored images
(a) Lena image: In Figs. 6a and b, we show typical

reconstruction error curves, respectively, for ISRA
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Fig. 6. Reconstruction error 

x*!x���

� as a function of the iteration number for ISRA (top) and RLA (bottom) in the basic (continuous
line), relaxed (thin dashed line) and accelerated (thick dashed line) versions of the algorithms. Data are those of Fig. 3e. Dots indicate the
positions of minima (see Table 1, row 5 for numerical values).

and RLA. They correspond to the Lena image
severely blurred, corrupted by a noise with an inter-
mediate level NS2 (row 5 of Table 1 and Fig. 3e).
Analogous curves are always observed, with rela-
tive positions deduced from Table 1. In any case,
after the initial decrease, the minimum is reached,
and when the iteration number increases, the re-

construction error grows, due to the noise ampli"-
cation in the non-regularized reconstruction pro-
cess. This e!ect is clearly more pronounced when
the noise level increases. The minimum values of
the reconstruction error are very close as well as the
best reconstructed images, whatever the algorithm
used.
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Fig. 7. Images a}f are the results of the deconvolution of corresponding images (a}f ) of Fig. 3. From a given starting image, the results
are almost the same whatever the version of the algorithm, and even whatever the algorithm used. The optimal iteration numbers
obviously di!er from a computation to another (see Table 1, rows 1}6 for numerical values).

We show in Fig. 7, the best images obtained for
di!erent noise levels (Table 1, rows 1}6, and Fig. 3).
Evidently, the reconstruction is better for low
noise levels, and the result is not convincing for the
highest noise, but it is not surprising if we consider
the aspect of the corresponding data in Figs. 3c
and f.
(b) Simulated data: We consider in Figs. 8a and

b the curves of the reconstruction error for the
astronomic-type simulated images severely blurred,
corrupted by an intermediate noise NS2 (row 14 in
Table 1 and Fig. 4e). For a comparison with Figs.
6a and b, only the basic image is changed. For such
image with many zeros, the relaxation of ISRA is
ine!ective, while this e!ect is important for RLA.
We show in Fig. 9 the best reconstructed images

for the data shown in Fig. 4 and Table 1, rows
10}15. For a given set of data, the restored images
are very close for ISRA and RLA. The minimum
values of the reconstruction error are also very
close for both the algorithms.

7.1.4. Inyuence of the noise level and the blur extent
on the reconstruction
Noise level: The in#uence of the noise level on the

reconstruction error is shown in Fig. 10 for ISRA.
The corresponding cases are those of rows 4}6 in
Table 1; clearly, when the noise level increases, the
minimum reconstruction error increases and the
optimal iteration number decreases. These curves
are typical examples, and an analogous behavior is
observed with a di!erent PSF and other images.
Similar results are observed with RLA.
Blurring: For a better understanding of the e!ect

of the PSF, we use the PSF represented in Fig. 11a,
to blur the image of Lena. This PSF is di!erent and
larger than the previous ones. The blurred image is
given in Fig. 11b, and the data are shown in Figs.
12a}c for the three noise levels previously used.
The results for the optimal iteration numbers

and the acceleration factors are given in Table 1,
rows 7, 8, 9 and can be compared with rows 4, 5,
and 6.
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Fig. 8. Reconstruction error 

x*!x���

� as a function of the iteration number for ISRA (top) and RLA (bottom) in the basic (continuous
line), relaxed (thin dashed line) and accelerated (thick dashed line) versions of the algorithms. Data are those of Fig. 4e. Dots indicate the
positions of minima (see Table 1, row 14 for numerical values).

In the case of an intermediate noise level NS2
(row 8 and Fig. 12b), for an ensemble of realizations
of the noise, the dispersion of the results (not shown
in Table 1) leads to the following comments:
For ISRA, the dispersion of the iteration number

for the best image is now $50% for all the versions
of the algorithm. This e!ect is also observed for
gain factors whose dispersion is about $16% for

the relaxed algorithm while for the accelerated al-
gorithm the gain is always 2 with an extremely low
spread.
For RLA, the spread of the iteration number for

the best image is about $30%, while the disper-
sion on the gain values is $15% for the relaxed
algorithm. The gain is always close to 2 for the
accelerated algorithm.
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Fig. 9. Images a to f are the results of the deconvolution of corresponding images (a}f ) of Fig. 4. From a given starting image, the results
are almost the same whatever the version of the algorithm, and even whatever the algorithm used. The optimal iteration numbers
obviously di!er from a computation to another (see Table 1, rows 10}15 for numerical values).

The best results are shown in Fig. 12d, e and f.
They correspond, respectively, to the data of Figs.
12a, b and c. The di!erent versions of a given
algorithm, show very close results whatever the
origin of the algorithm. The optimal iteration num-
bers are indeed di!erent in each case, as indicated
in the table.

7.1.5. The particular behavior of algorithm (4.6)
The e!ect of the relaxation is very important on

algorithm (4.6); some considerations on this algo-
rithm are mentioned in Section 5. We show in
Fig. 13a, for the data of Fig. 3e, the error curve. In
the unrelaxed case, several tens of thousands of
iterations are necessary, while 147 iterations only
are necessary in the relaxed case. The e!ect of the
choice of the function f

�
(x���) on the speed of

the algorithm is clearly seen in Fig. 13b where the
reconstruction error is shown for the relaxed form

of algorithm (4.6), for the pure ISRA algorithm, and
for the relaxed version of ISRA.
The simple fact to use the function f

�
(x���) leading

to ISRA, gives the best image at the iteration 418.
The gain in the iteration number due to this func-
tion is in itself very important, and fully justi"es the
remarks of Section 5. In the relaxed version of
ISRA, the best image is obtained at iteration 138.
The optimal iteration numbers are very close for
the relaxed version of (4.6), and of ISRA. The major
e!ect of the speed increase is then due to the modi"-
cation of the modulus of the descent vector, rather
than to the implicit modi"cation of the descent
direction due to f

�
(x���).

7.2. Images corrupted by a Gaussian additive noise

We use in this case the images blurred by a
large PSF corresponding to Figs. 2d and f. They
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Fig. 10. Representation on a semi-logarithmic scale of the reconstruction error as a function of the iteration number for the three noises
levels, for the basic (a) or relaxed (b) versions of ISRA, with noises NS1 (continuous line), NS2 (thick dashed line) and NS3 (thin dashed
line). Data are those of Figs. 3d, e and f; the related parameters are found in Table 1, rows 4}6. Curves corresponding to basic, relaxed or
accelerated algorithms have the same relative positions in what concern the noise. Results given by RLA are similar except for the
positions of the minimum. As expected, the minimum error increases with the level of noise; images with a high SNR require a high
optimal iteration number.

are corrupted by a zero mean Gaussian noise,
whose standard deviation is adjusted to correspond
to the intermediate noise level NS2 in the case of
the Poisson noise.

The blurred noisy images are shown in Figs. 14a
and b and they must be compared with Figs. 3e and
4e, respectively. When negative values appear due
to the noise, the images are shifted (adding a

964 H. Lante& ri et al. / Signal Processing 81 (2001) 945}974



Fig. 11. Result of convolution (11b) of the image of Lena (Fig. 1) degraded by a very large PSF (11a).

Fig. 12. Simulated noisy images of Lena (top) and best-reconstructed corresponding images (bottom). Noisy images are made of 10� (a),
10� (b) and 10 (c) photoelectrons per image. The unnoisy blurred image is that of Fig. 11b.
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Fig. 13. (a) Reconstruction error curves obtained with the algorithm (4.6), both in its unrelaxed (very slow) version (dashed line) and in
its relaxed form (continuous line). (b) the reconstruction error for the relaxed version of algorithm (4.6) is compared with that obtained
for ISRA, and for the relaxed version of ISRA. The minima are obtained respectively at iterations 25, 38 and 11. Original data: Fig. 3e
(row 5 of Table 1).

constant to the data), so that the data used in the
algorithms are always positive or zero.
We show in Figs. 15a and b the reconstruction

error curves for the data of Fig. 14a (Lena)
processed, respectively, by the ISRA and RLA
algorithms in their di!erent versions. In all cases
the accelerated algorithms (with n"2) are

faster than the basic version by a factor 2; in these
two versions, RLA seems to be faster than ISRA.
For the relaxed algorithms, the gain on the
iteration number is 3.2 for RLA, very close to
the Poisson noise case, while it is of 6.3 for ISRA
(for the Poisson noise, there was no gain in such
case).
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Fig. 14. Representations of severely blurred images corrupted by a Gaussian noise of variance similar to that of the NS2 Poisson noise:
(a) Lena, (b) simulated astronomical object.

The analogous results for the simulated image
are shown in Fig. 16a for ISRA and 16b for RLA.
The accelerated algorithms exhibit as in the pre-
vious cases a gain 2 on the speed increase. Concern-
ing the speed increase due to the relaxation,
the e!ects are very close to those observed in the
Poisson noise case, for ISRA, the gain is only 1.2,
while it is about 6.1 for RLA. For a given data set,
the reconstructed images are very close whatever
the algorithm is used; the results are shown in Figs.
17a and b corresponding, respectively, to the data
14a and 14b.
We can then conclude that there is no funda-

mental di!erence when the two types of algorithms
are used for data corrupted by the Poisson and
Gaussian noise. The origin of the algorithm is not
a strong constraint related to the real nature of the
noise in the data.

8. Conclusion

We proposed in this paper a general method to
devise e!ective multiplicative algorithms for likeli-
hood maximization under non-negativity con-

straint; we analyze the two classical noise processes
considered usually.
The originality of the proposed approach is in

the fact that it can be applied to any convex func-
tion if the de"nition range of the objective function
is bounded, and contains the domain of the con-
straints. Such approach allows unifying the
methods for obtaining iterative algorithms for like-
lihood maximization under non-negativity con-
straints, particularly multiplicative forms of these
algorithms.
Our proposal is based on the use of the basic

gradient algorithm adapted to verify the
Kuhn}Tucker "rst-order optimality conditions.
The fundamental point is that at each step of the
iterative descent procedure, the constraints are
taken into account "rst, only then, the next esti-
mate is computed. Writing the algorithms in a par-
ticular form where the negative gradient of the
`objective functiona appears clearly, we can ana-
lyze and control easily their behavior concerning
the constraints and the convergence properties.
For the Poisson noise process, we showed that

the Richardson}Lucy algorithm, largely used in the
"eld of Astrophysics, is a particular unrelaxed case
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Fig. 15. Reconstruction error curves corresponding to data of Fig. 14a, for ISRA (a) and for RLA (b). Continuous line: basic form of the
algorithm, thick dashed line: accelerated version, thin dashed line: relaxed case. Positions of the minima are at iteration numbers 41, 20
and 10 for (a), and at iterations numbers 41, 20, and 18 for (b).

of a more general algorithm. In the case of a Gaus-
sian additive noise, the ISRA algorithm may also
be considered as a particular form of a more gen-
eral algorithm.
To analyze the e!ect of the non-negativity con-

straint, we take into account the same constraints
using di!erent functions. Introducing these func-
tions in our method, we obtain the so-called `accel-

erated algorithmsa and we fully justify the origin of
several algorithms found in the literature. In the
particular case shown here, these algorithms have
a convergence twice faster than of the basic ISRA
and RLA.
The e!ect of the relaxation of the basic algo-

rithms is analyzed for two strongly di!erent images
and PSFs. For data corrupted by a Poisson noise,
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Fig. 16. Reconstruction error curves corresponding to data of Fig. 14b, for ISRA (a) and for RLA (b). Continuous line: basic form of the
algorithm, thick dashed line: accelerated version, thin dashed line: relaxed case. Positions of the minimum are at iteration numbers 841,
420 and 719 for (a) and at iteration numbers 330, 154, and 53 for (b).

when we use the relaxed form of RLA, we observed
the most important speed up factors in the case of
an astronomical simulated image, mainly for low
noise level and a severe blur. When the noise level
increases as well as when the extent of the PSF
decreases, the speed up factor decreases. The relax-

ation is ine$cient when ISRA is used on the same
images.
In the case of a continuous gray level image

(Lena), the speed up factor is only about some units
and is always larger in the case of severely blurred
images with a low noise level. In about all cases,
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Fig. 17. Reconstructed images for data corrupted by a Gaussian noise. (a) Corresponds to the data of Fig. 14a and (b) to data of Fig. 14b.
Very similar results are obtained whatever the algorithm or version used.

RLA is faster and the speed-up factor is equal or
higher than for ISRA.
To avoid erroneous conclusions concerning the

optimal iteration numbers and the speed up factors,
di!erent realizations of the noise process were car-
ried out. The results exhibit an important spreading
of the values of the optimal iteration number, main-
ly when the PSF is large, and a relatively low
dispersion of the speed up factors.
To check the behavior of the algorithms, we give

some results obtained for blurred images corrupted
by a Gaussian noise. The overall remark is that
there is no noticeable di!erence with the Poisson
noise case whatever the algorithm used.
The algorithms independently of the noise pro-

cess on which their are founded, gives generally
very close restored images for all types of noise in
the image. If the CPU time is considered, the relax-
ation is an interesting procedure only if the gain
factor on the iteration number is high enough to
balance the lengthening of an iteration, due to the
line search procedure. When the gain factors are
only of some units, the `accelerateda algorithms
become more interesting than the relaxed ones be-
cause they allow to speed up the algorithms by
a factor 2.

The relaxation e!ect is particularly important for
algorithm (4.6) and hugely depends of the data for
the other algorithms.
We want to emphasize the generality of the

method proposed to devise the algorithms, it
clearly shows that if the support of the solution is
known, this constraint is implicitly taken into ac-
count due to the multiplicative form of the algo-
rithms. Indeed, the initial estimate must be chosen
so that the constraints are ful"lled, consequently, at
the initial step, the components of the solution
vector are set to zero outside the support, then, they
remain zero for all the iterations.
In addition to that, this method can be extended

to solve the two following problems: the "rst and
probably the most important is that we can obtain
multiplicative algorithms when the problem is ex-
plicitly regularized by a smoothness constraint.
Such regularization can be analyzed in the general
Bayesian context, and, as shown in [16], the intro-
duction of the `a prioria knowledge leads to a pe-
nalization of the basic objective function, either in
the sense of Tikhonov, or by an entropy term. We
proposed recently [24] such analysis for the
Poisson case, and a detailed paper is now in pre-
paration; the Gaussian case will be treated
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simultaneously. The second development of the
method concerns the simultaneous constraints on
the extreme values of the solution. This problem
that appears in the deconvolution of absorption
spectra can also be treated with our method and
e!ective algorithms will be proposed soon.

Appendix A

Relation (6.2) can be modi"ed in the equivalent
form

x
�

[<(x)]�
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�[;(x)]�![<(x)]��
�
"0. (A.1)

This expression can be expanded in the form
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Then, we can write the algorithm in the form
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This algorithm is similar to the general form (2.4)
and we observe that the function f

�
(x) appearing in

this case is

f
�
(x���),
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The e!ect of this function consists in a modi"cation
of the direction and of the modulus of the descent
vector, in comparison with the descent vector in the
basic case n"1. This direction is always given by
(2.8).
The algorithm can also be written in the form
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The non-negativity of the component x�����
�

is en-
sured if
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The maximum stepsize for constraints ful"llment of
all the components is then given by
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If, at each iteration, the optimal value of the step-
size ����

�
independent if `ia, is computed by a line

search procedure in the range ]0, ����
�
], the algo-

rithm can be written in the classical form
x�����"x���#����

�
d���, and his convergence is al-

ways ensured. The descent direction is expressed by

d���"diag�x���
�
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Using the function f
�
(x���) expressed in (A.4), we can

obtain multiplicative algorithms. Indeed, ����
�

is al-
ways greater than 1, so, using a constant stepsize
����
�

"1 ∀k, we obtain ∀i, from (A.5)

x�����
�

"x���
�

[;(x���)]�
�

[<(x���)]�
�

. (A.9)

For such algorithms, the convergence must be ana-
lyzed and depends evidently of `na and of the objec-
tive function J(x). The use of the exponent `na
proposed in the literature [27,44] as a procedure to
increase the speed of the basic (n"1) algorithm is
then fully justi"ed.
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Appendix B. Comparison with the Rosen's projected
gradient method [1]

In this method, the basic idea consists of projec-
ting at each step of the iterative process, the dis-
placement on the boundary of the range of the
feasible solutions. We then ensure that the new
estimate is an acceptable solution. Thus, modifying
as little as possible the initial method, we can expect
to retain its e!ectiveness. For a gradient initial
method, it is the gradient vector that is projected on
the boundary of the feasible solution range. Conse-
quently, this method gives a trajectory following
the boundary in the direction of the greatest relative
slope authorized by the constraints. This method is
mainly interesting for linear constraints. Its imple-
mentation is very simple in the case of constraints on
the extreme values of the solution, for constraints on
the spatial support of the solution or for constraints
on the integral of the solution.
The algorithm may be described as follows:
(1) Starting from a feasible initial estimate (sat-

isfying the constraints), for a gradient algorithm,
compute the maximum value of the stepsize in the
gradient direction (or in the projected gradient di-
rection) giving the next estimate on the boundary of
the range of the feasible solutions (so, the number of
active constraint increases by one at least).
Let �

�
be this value.

(2) Select by line search the stepsize � minimizing
J(x) in the gradient or projected gradient direction;
this line search is performed in the range
0(�)�

�
.

(3) If �(�
�

go to 1.
If �"�

�
, one more constraint at least (generally

only one more constraint than in step (2) becomes
active, perform a step of the gradient procedure
with �"�

�
and continue.

(4) Project on the constraints the gradient at the
current estimate; for constraints such as x

�
*0, we

set to 0 the gradient components corresponding to
the zero components of the current estimate. This is
equivalent to multiplying the gradient by the pro-
jection diagonal matrix D whose entries d

��
"0 if

the ith component of the current estimate is 0 and
d
��
"1 elsewhere.
If all the components of the projected gradient

are 0 go to 5, else go to 2.

(5) Check that for all the components of the
solution corresponding to active constraints (here,
for all the zero components of the current estimate),
the corresponding components of the gradient are
positive. In such a case, the optimum is reached, the
KT conditions are satis"ed, else, relax the con-
straint corresponding to the most negative com-
ponent of the gradient, project the gradient on this
new set of constraints and go to 1.
To show that this algorithm is closely related to

the algorithms described in the previous sections,
we propose to replace the word `Gradienta by the
more general expression `descent directiona, so we
can write at the current iteration the general form

x�����"x���#����D���P���[!�J(x���)] (B.1)

with the descent direction

d���"P���[!�J(x���)]. (B.2)

For the projected gradient

P���"D��� ���� optimized at each step. (B.3)

For (3.4)

P���"diag�
x���
�
a
�
� ���� optimized at each step

or ����"1 ∀k in the RL case,
(B.4)

for (4.10)

P���"diag�
x���
�

(H�RHx���)
�
�

���� optimized at each step

or ����"1 ∀k in the ISRA case,

(B.5)

for (4.6)

P���"diag[x���
�
] ���� optimized at each step. (B.6)

In the case of accelerated algorithms, with n"2:
For (6.5)

P���"diag�
x���
�

a�
�
�H��

y

Hx����
�

#a
���

���� optimized at each step

or ����"1 ∀k in (6.8),

(B.7)
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for (6.11)

P���"diag�x���
�

[H�Ry#H�RHx���]
�

(H�RHx���)�
�

�
���� optimized at each step

or ����"1 ∀k in (6.14).

(B.8)

We can see that the matrix D��� and P��� have zero
diagonal entries in the same positions. The global
descent directions for the various algorithms are
then related to the weights of the components of the
gradient. For algorithms (3.4), (4.6), (4.10), (6.5) and
(6.11), these weights are proportional to the di!er-
ence between the components of the current esti-
mate and the constraint, i.e. (x���

�
!0). With a unit

relaxation factor, the solution remains always pos-
itive, some components of the solution reach the
constraint asymptotically, the Lagrange multipliers
are positive when the corresponding components of
the solution are 0. This point is demonstrated in
[34,14] for RL and ISRA algorithms, so point 5 of
the projected gradient algorithm becomes unnec-
essary.
In the relaxed form of these algorithms as well as

in the Rosen's projected gradient, because the step-
size is optimized at each step, the constraint can be
reached. We can then consider that all the algo-
rithms in the form (2.4) are Projected Weighted
Gradient algorithms.
The analogy is reinforced if we use support con-

straints, that is when the solution is constrained to
be zero in a given spatial range. In this case, the
initial estimate is chosen so that the constraint is
satis"ed. Due to the matrix P���, all the values
initially set to zero remain equal to zero in the
projected gradient method, as well as in our
algorithms.

Appendix C. Summary of the algorithms

Poisson process algorithms:
Basic form (RLA) (3.8)
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Relaxed form (3.4)
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Accelerated form (6.8)
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Gaussian noise algorithms:

(4.6) x�����
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Basic form (ISRA) (4.15)
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Relaxed form (4.10)
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Accelerated form (6.14)
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