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Abstract—Internal stress plasticity occurs when a small external stress biases internal mismatch strains pro-
duced by, e.g., phase transformation or thermal expansion mismatch. At small applied stresses, this defor-
mation mechanism is characterized by a deformation rate which is proportional to the applied stress and is
higher than for conventional creep mechanisms. In this work, we demonstrate the operation of internal stress
plasticity due to internal chemical stresses produced by chemical composition gradients. We subject speci-
mens ofβ-phase Ti-6Al-4V to cyclic charging/discharging with hydrogen (by cyclic exposure of specimens
to gaseous H2), under a small external tensile stress. As expected for internal stress plasticity, the average
strain rate during chemical cycles at 1030°C is larger than for creep at constant composition (hydrogen-free
or -saturated), and a linear stress dependence is observed at small applied stresses. Additionally, we present
an analytical model which couples elastic and creep deformation with a transient diffusion problem, wherein
the diffusant species induces swelling of the host lattice. Without the use of any adjustable parameters, the
model accurately predicts both the observed strain evolution during hydrogen cycling of Ti-6Al-4V and the
measured stress dependence of the deformation. 2001 Acta Materialia Inc. Published by Elsevier Science
Ltd. All rights reserved.
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1. INTRODUCTION

The phenomenon of internal stress plasticity is
observed in materials which are externally stressed
while simultaneously experiencing internal mismatch
strains [1]. The external stress biases these mismatch
strains, which develop (by a plastic deformation
mechanism such as yield or creep) preferentially in
the direction of the external stress. Internal stress
plasticity is commonly observed during thermal cyc-
ling, where internal mismatch strains develop due to
(i) thermal expansion mismatch between coexisting
phases, as in metal-matrix composites (e.g., in Al/SiC
[2–5], Al/Be [6], or Al/Al 3Ni [7]), (ii) thermal expan-
sion mismatch between adjacent grains in an aniso-
tropic solid (e.g., Zn [8–10] or U [10, 11]), or (iii)
density mismatch between polymorphic phases dur-
ing a solid/solid phase transformation (e.g., in Fe and
Fe-alloys [12–15], Ti and Ti-alloys [12, 16–19], and
other polymorphic materials [12, 20, 21]). Recently,
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some investigators have demonstrated internal stress
plasticity during pressure cycling, at constant tem-
perature, due to (i) compressibility mismatch between
phases in a composite (in Al/SiC, in uniaxial tension
or during powder compaction [22, 23]), and (ii) press-
ure-induced allotropic phase transformation (in H2O
ice [24]).

In all of the above cases, internal stress plasticity
is characterized by two main features. First, at low
levels of applied stress, the global deformation obeys
a linear flow law, where the average strain rate during
cycling is proportional to the applied stress. This lin-
earity is noteworthy because, under isothermal (and
isobaric) conditions, these materials typically exhibit
a deformation power-law with a higher stress
exponent,n = 3�8. Second, because of its low stress
exponent, internal stress plasticity occurs at a faster
rate than creep in the absence of internal stresses at
low applied stresses. The combination of high flow
stability and rapid deformation at low stresses makes
internal stress plasticity of interest in shape forming;
after multiple thermal or pressure cycles, this mech-
anism often leads to very large tensile elongation
(�100%) and is thus often described asinternal
stress superplasticity [1].
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In addition to thermal and pressure cycling, there
is a possibility of inducing internal stress plasticity by
cycling the chemical composition of a material while
subjecting it to an external stress. Indeed, recent
experiments by Frary et al. [25] and by Zwigl and
Dunand [26, 27] have demonstrated that cycles of
hydrogen alloying/dealloying can induce internal
stress plasticity in titanium. Both of these investi-
gations involved cyclic alloying of titanium with
hydrogen, which was introduced as H2 in the test
atmosphere and removed by vacuum annealing. How-
ever, most of the experiments in these studies
involved the a/b phase transformation of titanium,
which is triggered at a critical concentration of hydro-
gen.

During chemical cycles such as those described
above, the absorption of a diffusant leads to a swell-
ing expansion of the crystal lattice. Because of con-
centration gradients of the diffusing species, a swell-
ing gradient is established, leading to so-called
chemical stresses [28]. At low temperatures, these
stresses are accommodated elastically, as analyzed in
Refs. [28–32]. At elevated temperatures, these
internal chemical stresses may be accommodated by
creep, leading to internal stress plasticity. Although
the experiments described above [25–27] have exam-
ined deformation during chemical cycling, they have
not presented evidence for internal stress plasticity
due solely to mismatch from chemical swelling.

In the present work, we measure the tensile defor-
mation of the engineering alloy Ti-6Al-4V at 1030°C
(in the b phase) under conditions of cyclic
charging/discharging with hydrogen. We demonstrate
that chemical stress gradients, without a phase trans-
formation, are sufficient to produce internal stress
plasticity. Additionally, we present an analytical
model that considers the superposition of internal
chemical stress with an external uniaxial stress, and
compare the model predictions to the present experi-
ments.

2. EXPERIMENTAL PROCEDURES

Powder metallurgy Ti-6Al-4V billets (from Dyna-
met Technology, Burlington, MA) were machined
into tensile specimens of 20 mm gauge length and 5
mm gauge diameter. Tensile deformation experiments
were conducted in a custom creep apparatus described
in Ref. [20], at a constant temperature of 1030°C,
monitored by a type-K thermocouple in contact with
the specimen gauge. Deformation of the specimen
was measured with a linear voltage-displacement
transducer at the cold end of the load train. Two dif-
ferent gas mixtures were used for the test atmosphere
during the experiments; high-purity argon (99.999%)
and a mixture of high-purity argon with 3.66% H2.
At atmospheric pressure, these two atmospheres cor-
respond to hydrogen partial pressures of PH2 = 0.0
and 3.8 kPa, respectively. The gas flow rate was
maintained at 1.3 l/min, ensuring that the volume of

gas in the test apparatus was exchanged about every
25 s. Gas was introduced into the apparatus through
a sprayer to insure that the flow of gas was turbulent
around the specimen, preventing concentration gradi-
ents in the test atmosphere.

Limited isothermal creep data was collected at
1030°C at various small stresses (0.5–5 MPa), and in
both test atmospheres (Ar and Ar/H2). Tensile defor-
mation was also investigated at 1030°C during cyc-
ling of the test atmosphere between PH2 = 0.0 and 3.8
kPa. Two types of cycles were used, with periods of
24 and 30 min. Thus, during a single cycle, specimens
were exposed to 12 or 15 min of the Ar/H2 mixture,
followed by an equal exposure to the high-purity Ar
atmosphere. In every case, at least 3 consecutive
chemical cycles were performed to insure a dynamic
steady-state, and to verify reproducibility of the speci-
men length changes during chemical cycling.

3. RESULTS

At the test temperature (1030°C), Ti-6Al-4V is sin-
gle phase, with Al and V in solid solution within BCC
β-Ti [33]. Furthermore, the introduction of hydrogen
to the β-Ti phase of Ti-6Al-4V does not cause a phase
transformation [34, 35]. Thus, for all of the experi-
mental conditions examined in this work, the material
was in the b-phase field. The microstructure both
before and after the high-temperature experiments
was found to consist of large (100–400 µm) prior-
b grains.

The isothermal creep data at 1030°C are shown in
Fig. 1, with the uniaxial strain rate ė plotted against
the applied tensile stress s. The strain rate data exhib-
its a power-law stress dependence:

ė � K·s n (1)

Fig. 1. Isothermal creep rate of Ti-6Al-4V as a function of
the uniaxial tensile stress at 1030°C, in a high-purity argon

atmosphere as well as the Ar/H2 mixture.
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with a stress exponent n close to three and with some
scatter between different specimens. The test atmos-
phere (Ar or Ar/H2) did not appreciably affect the
creep behavior of the alloy, as shown in pure Ti for
these low strain rates and hydrogen pressures [36].
All of the data can be fitted to equation (1) with
values of K = 4.8·10�7 MPa�2.8 and n = 2.8. These
values are very close to those obtained in our previous
work [18] on hydrogen-free Ti-6Al-4V at the same
temperature (K = 4.7·10�7 MPa�2.8 and n = 2.8), and
are in broad agreement with data from the literature
for deformation of hydrogen-free Ti-6Al-4V at simi-
lar temperatures (1000–1100°C) and higher stresses
(6.4–160 MPa) [37, 38].

During chemical cycling, the average deformation
rates were larger than for isochoral creep (i.e., creep
at constant composition) in either Ar or Ar/H2. Typi-
cal results are shown in Fig. 2 for the 24 min cycles,
where the true strain of the specimen gauge is plotted
as a function of time during the chemical cycles.
Similar curves were obtained for the 30 min cycles.
During exposure to gaseous H2, the specimen absorbs
atomic hydrogen and the crystal lattice swells, giving
rise to a transient increase in specimen length. On the
second half of the cycle, during annealing in pure Ar,
the dissolved hydrogen diffuses to the specimen sur-
face and escapes into the hydrogen-free atmosphere,
causing a contraction of the specimen gauge. Near the
end of each half-cycle, the diffusion of hydrogen into
or out of the specimen is complete, and the specimen
deforms only by steady-state creep. For comparison
with the cycling data, the steady-state isochoral creep
predicted by equation (1) is also shown as dashed
lines in Fig. 2. The experimental deformation rates
measured near the end of the charging or discharging
half-cycles are in good agreement with these expected

Fig. 2. True strain history of Ti-6Al-4V during 24-min chemi-
cal cycles, at two different applied stresses and 1030°C. Shown
for comparison is the expected creep history for a specimen
with constant composition deforming in pure Ar or Ar/H2 mix-

ture (dashed lines).

creep rates. Finally, we note that in all cases, the
strain history during chemical cycling was identical,
within experimental error, for each consecutive
chemical cycle at the same stress.

The enhanced deformation during chemical cycling
is also shown in Fig. 3, where the strain increment
�e developed after each full chemical cycle is plotted
as a function of the applied tensile stress s. The
amount of strain expected due to creep (following
equation (1)) at a constant composition (H-free or H-
saturated) is shown for comparison. Whereas isocho-
ral creep strain developed over a fixed duration is
expected to follow a power-law relationship with a
stress exponent of about 2.8 (Fig. 1), the deformation
during chemical cycling is characterized by a stress
exponent near unity, and is significantly more rapid
than the expected power-law creep.

Finally, we note that the deformation during chemi-
cal cycling was approximately equal for the 24- and
30-min chemical cycles, indicating that the specimens
were completely charged with hydrogen within 12
min. Since deformation during chemical cycling is
fast compared to creep without cycling, the additional
6 min of creep (30- compared to 24-min cycles) do
not appreciably increase the average rate of defor-
mation during cycling.

4. DISCUSSION

The observed stress exponent of unity (Fig. 3) and
the enhanced rate of deformation observed during
chemical cycling (Figs 2 and 3) are the defining
characteristics of internal stress plasticity, and indi-
cate that the internal stresses due to the gradient in
lattice swelling are sufficient to activate this defor-
mation mechanism. To our knowledge, this is the first
direct observation of internal stress plasticity due

Fig. 3. Strain increment �e developed after each chemical
cycle, plotted as a function of the applied tensile stress s. The
strain expected by creep without chemical cycling is also

shown for comparison.
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solely to swelling mismatch during a process of cyclic
alloying. Our results are also in agreement with some
trends observed in recent studies in the Ti-H system
during cyclic alloying, as described in the following.

First, in a single experiment at 1000°C, Frary et al.
[25] showed that one cycle of hydrogen addition to,
and removal from, b-titanium, without any phase
transformation and in the absence of any external
stress, caused plastic deformation by ratchetting.
They measured a plastic axial shrinkage of 0.07% in
a long cylinder of titanium, in which hydrogen dif-
fusion was predominantly radial. However, these
authors considered only deformation without external
stress (ratchetting), and thus could not establish the
linear flow law observed in the present work for Ti-
6Al-4V (Fig. 3). Second, Zwigl and Dunand [26, 27]
have investigated uniaxial deformation during cyclic
charging of unalloyed titanium with hydrogen, under
conditions where the chemical cycles induced the
titanium a/b allotropic transformation. They found a
linear relationship between �e and s, but noted that
the internal stress generation was due to a complex
superposition of chemical stresses from lattice swell-
ing and transformation stresses due to the mismatch
in density between a- and b-Ti. The present results
are in line with these studies, and further demonstrate
that swelling mismatch due to a hydrogen concen-
tration gradient can produce sufficient internal
stresses to induce internal stress plasticity, without the
necessity of a phase transformation.

4.1. Deformation during chemical half-cycles

During a chemical cycle, the observed deformation
is composed of several additive contributions. First,
the swelling of the crystal lattice due to hydrogen
charging (�es,c) is fully recovered upon discharging
(�es,d = ��es,c). Second, the plastic deformation due
to internal stress plasticity, �eisp, is not reversible and
accumulates on each half of the chemical cycle; thus,
there are two half-cycle contributions to the defor-
mation, �eisp,c on charging, and �eisp,d on discharging.
Finally, it is possible to induce permanent plastic
deformation during chemical cycling in the absence
of external stresses. This strain ratchetting, which was
demonstrated by Frary et al. [25] during chemical
cycles in the Ti-H system, is usually considered inde-
pendent of the applied stress [39], and represents a
third contribution to deformation (�er,c on charging
and �er,d on discharging). At low stresses, creep is
slow compared to internal stress plasticity (Fig. 3),
and may be neglected as a contributor to deformation.
Thus, on the charging or discharging half-cycles, the
total strain is given by the linear addition of these
three contributions:

�ec � �es,c � �er,c � �eisp,c (2a)

�ed � �es,d � �er,d � �eisp,d (2b)

Although the chemical swelling strains �es are equal
and opposite on the two halves of the chemical cycle,
the amount of deformation due to internal stress plas-
ticity �eisp and ratchetting �er may be different for
the charging and discharging half cycles. At low
stresses, internal stress plasticity occurs with a linear
stress dependence, �eisp = (d�e/ds)·s, where d�e/ds
is the slope of the linear relationship, and is depen-
dent upon the internal strain state and the deformation
characteristics of the material (see, e.g., Refs. [12,
40]). Because the swelling and ratchetting strain con-
tributions are assumed independent of the applied
external stress, equation (2) can be rewritten:

�ec � �es,c � �er,c �
d�eisp,c

ds
·s (3a)

�ed � �es,d � �er,d �
d�eisp,d

ds
·s (3b)

According to equation (3), plotting �ec or �ed against
the applied tensile stress should give a linear relation-
ship, the slope of which is the deformation due to
internal stress plasticity during each half-cycle. Thus,
the amount of deformation during both hydrogen
charging and discharging can be revealed in this man-
ner, as done previously for thermal cycling experi-
ments [18, 20].

Figure 4 shows this relationship, plotted for hydro-
gen cycles of both 24- and 30-min duration. Since
internal stress superplasticity is only expected to be
linear at small applied stresses [1], only data points
for s�1.5 MPa are shown. As expected, the relation-
ship between �e and s is linear, for both charging

Fig. 4. Measured strain increment after each chemical half-
cycle, as a function of the applied stress, indicating equal con-
tributions to deformation for the charging and discharging por-
tions of a single cycle, and the lattice swelling extrapolation

to the origin.
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and discharging half-cycles. Furthermore, the slopes
of these two lines are found to be equal,
d�ec/ds = d�ed/ds = 1.0 GPa�1; internal stress plas-
ticity thus is found to occur equally on the charging
and discharging half-cycles. The total superplastic
slope, d�e/ds = 2.0 GPa�1, found by adding the two
half-cycle contributions, is in the range of reported
values obtained for thermal cycling through the a/b
phase transformation range of Ti-6Al-4V (from 0.5
to 2.5 GPa�1, depending on the thermal cycle shape
and size [18]). Although the specimens in this study
never experienced more than about 10% elongation,
our observations of internal stress plasticity suggest
that, if exposed to many chemical cycles, Ti-6Al-4V
could exhibit internal stress superplasticity (strains
greater than 100%).

4.2. Chemical swelling and strain ratchetting

According to equation (3), the intercepts on Fig. 4
provide information about the swelling and ratchet-
ting strains during chemical cycling. First, without
applied stress, the contribution of internal stress plas-
ticity is nil, so the net deformation after a complete
chemical cycle, �ec + �ed = �0.03% is due solely to
chemical ratchetting. Both the sign and the magnitude
of this value agree with the value reported by Frary
et al. [25] for hydrogen cycling of pure Ti in the b-
field at 1000°C (�er��0.07%), although those
authors used a somewhat larger partial pressure of H2

(PH2 = 5.1 vs. 3.8 kPa in the present study) and a
longer cycle time (55 vs. 24 or 30 min in the
present work).

The total ratchetting strain (�er = �0.03%) may
evolve completely during charging, completely dur-
ing discharging, or may be a sum of two independent
contributions from the charging and discharging half-
cycles. Thus, it is impossible to accurately determine
the swelling strain �es ( = �es,c = ��es,d) from equ-
ation (3). However, based on equation (3) and the
extrapolated intercepts in Fig. 4, we can conclude that
the swelling strain must be between the values of
�es = 0.08 and 0.11%. These two values correspond
to the ratchetting strain developing entirely upon
charging, and entirely upon discharging, respectively.
In what follows, we consider the physics of chemical
swelling, in order to verify that the above range of
swelling strains is reasonable.

The diffusion of hydrogen into metals has been
investigated by numerous authors (see, e.g., Refs. [41,
42] for reviews of the Ti-H system), and in almost
every case, the linear strain �es associated with lattice
swelling due to dissolved hydrogen is found to be a
linear function of the hydrogen concentration, c:

�es �
1
3

�v
�

·c (4)

where �v is the partial molar volume of hydrogen,
and � is the atomic volume of the metal into which

it diffuses. In the present case, Ti-6Al-4V in its solid-
solution b-phase was exposed to gaseous hydrogen at
a partial pressure of PH2 = 3.8 kPa. The equilibrium
amount of absorbed hydrogen, ceq is given, for pure
b-Ti, by Sievert’ s law [42]:

log10(PH2) � 2·log10(ceq) � 9.47�
4720

T
(5)

where T is the absolute temperature and PH2 is in Pa.
At the test temperature (1030°C) and hydrogen par-
tial-pressure used in the present study, equation (5)
gives ceq = 7.3 at% hydrogen. Thus, after complete
charging, the swelling of the b-phase Ti-6Al-4V cor-
responds to a dissolved hydrogen concentration of 7.3
at%, if the solid solution elements (Al and V) have
an insignificant effect on solubility and swelling.
While the effect of these elements on the hydrogen
solubility of b-Ti-6Al-4V is unclear, the addition of
6 wt% Al to a-Ti is known to reduce the hydrogen
solubility by about a factor of two [43]. If this
relationship is also true for b-Ti-6Al-4V, then the dis-
solved hydrogen concentration may be as low as 3.7
at%. Using these two possible values for c (7.3 or 3.7
at%), and taking the atomic volume of b-Ti-6Al-4V
to be the same as b-Ti, � = 18.1 Å3 [44], as well as
the measured upper- and lower-bound linear swelling
strains (�e = 0.08% to 0.11%) from Fig. 4, equation
(4) brackets the partial molar volume of hydrogen in
b-Ti between �v = 0.60 Å3 and 1.6 Å3. These values
agree well with the broad range of values (�v =
0.75�1.81 Å3) found by previous authors for lattice
swelling of various β-Ti alloys (but not Ti-6Al-4V)
at various temperatures [45]. The direct measurement
of �v in Ti-6Al-4V by room-temperature diffraction
techniques (e.g., Refs. [46, 47]) is complicated by sig-
nificant internal mismatch strains between the
coexisting a and b phases [47].

4.3. Modeling internal stress plasticity due to chemi-
cal stresses

As described in the Introduction, there are many
possible mechanisms for internal stress plasticity,
including thermal expansion mismatch, compress-
ibility mismatch, and phase transformation mismatch.
Accordingly, there have been many models proposed
to predict the stress dependence of the deformation
during thermal or pressure cycling [4, 12, 40, 48].
However, these models are often specific to the type
of mismatch they consider, and several are dependent
on microstructural geometry. None of the existing
models is suitable to predict the deformation we
observe during chemical cycling. Therefore, in this
section we develop an analytical model to describe
uniaxial deformation under the action of an external
stress and internal chemical stresses, which arise due
to lattice swelling upon the introduction of a diffus-
ant. A thorough description of the coupled
diffusion/deformation problem for arbitrary geo-
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metries under multiaxial stress conditions would
require elaborate finite-element type models. The
approach taken here is considerably simpler and more
versatile, but still incorporates the essential physical
conditions of the problem. The three main assump-
tions we employ in the model are listed below:

1. We consider the uniaxial deformation of a very
long (infinite) specimen of uniform cross section,
under a constant applied stress sA in the long
dimension. For the purposes of the calculations,
the specimen cross-section is divided into N units
of infinite length, as shown for an infinite cylinder
in Fig. 5.

2. We assume that the stress state in the specimen
is primarily uniaxial; transverse stresses are thus
explicitly neglected in the subsequent mathemat-
ical developments. This simplified approach was
selected for two reasons. First, this type of uniaxial
model has often been employed to model, e.g.,
fiber-reinforced composites or coated fibers [49–
55] during thermal excursions or uniaxial loading.
Despite neglecting the complex triaxiality of true
composite stress states, these models have proven
to be reasonably accurate for most purposes,
including conditions of elasticity, plasticity, and
creep. Zhang et al. [56] have compared such a
one-dimensional approximation to a more com-
plex axisymmetric model for a long fiber embed-
ded in a cylindrical matrix under conditions of

Fig. 5. Cylindrical geometry considered in the analytical model,
assumed to be very long in the tensile axis, and divided into

N concentric elements (N = 8 is shown here).

thermal cycling, and noted that there are many
cases where the uniaxial model is a reasonable
approximation for the multiaxial solution. Second,
the uniaxial approximation is easy to implement
and leads to a simple and useful result, but more
importantly, it does not require that the cross-sec-
tional geometry be specified. The details of the
cross-sectional geometry are thus only important
as regards the diffusion problem. In the present
work we consider the specific case of a long cylin-
der (circular cross-section), but the uniaxial model
allows for ready adaptation to any other cross-sec-
tional geometry.

3. In the model, chemical stress gradients are pro-
duced upon introduction of a diffusant at the sur-
face of the specimen. Because the specimen is
very long in one dimension, chemical diffusion is
taken to occur only in the plane perpendicular to
the stress axis. Additionally, the applied stress is
assumed small enough that it does not impact the
diffusivity of the diffusant species. In the practical
cases we will consider later, the stress range of
interest is sA�5 MPa, for which this assumption
is reasonable.

In the following section, we first develop the mech-
anical aspects of the model, independently of the
cross-sectional geometry. The diffusion problem is
then treated separately in a later section.

4.3.1. Mechanics of deformation. Following the
assumption of a purely uniaxial stress state, each of
the N elements in the specimen has a stress si and
cross-sectional area Ai (i = 1 to N), and together the
elements must obey an axial force balance:

�N
i � 1

si·Ai � sA·A (6)

where A is the total cross-sectional area of the speci-
men. In addition, to maintain strain compatibility, the
strain ei must be equal in all of the elements:

ei � ei�1, (i � 2 to N) (7)

We consider situations in which the material sus-
tains plastic deformation by creep, where the creep
strain rate, ėci , obeys a power-law in stress:

ėci � sign(si)·Ki·|si|ni (8)

where sign(si) denotes the sign of the stress (positive
for tension or negative for compression), Ki is a tem-
perature-dependent constant, and ni is the power-law
stress exponent. At any instant in time, the material
can also sustain elastic strains which are given by
Hooke’s Law:
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eei �
si

Ei

(9a)

If the Young’s modulus, E, in each element is inde-
pendent of time, then equation (9a) can be differen-
tiated with respect to time as:

ėei �
ṡi

Ei

(9b)

The instantaneous strain rate in each element is
thus composed of these two deformation contri-
butions (elasticity and creep), and a third contribution
due to chemical swelling, ėsi:

ėi � ėci � ėei � ėsi (10)

The physical constitutive law describing chemical
swelling will be discussed later; at present we proceed
assuming that the value of ėsi can be calculated at any
point in time in each element. Now, combining equa-
tions (7–10) gives N�1 similar equations:

ṡi�1

Ei�1

�
ṡi

Ei

� ėsi�ėsi�1 � sign(si)·Ki·|si|ni (11)

�sign(si�1)·Ki�1·|si�1|ni�1, (i � 2 to N)

An additional equation is found by differentiating
equation (6) with respect to time, assuming a constant
applied stress:

�N
i � 1

ṡi·Ai � 0 (12)

The terms in equations (11) and (12) are composed
of known materials parameters (E, K, and n), the area
of each element, Ai, and the instantaneous stress state
in the elements. If, at a given moment, all of these
parameters are known, then equations (11) and (12)
constitute a system of N equations, the N unknowns
being the rates of stress change in the elements, ṡi.
These equations are conveniently expressed in matrix
form, with equation (12) occupying the upper row:

�
A1 A2 A3 … AN

1/E1 �1/E2 0 … 0

0 1/E2 �1/E3 … 0

� � � � �

0 0 0 1/EN�1 �1/EN

��
ṡ1

ṡ2

ṡ3

�

ṡN

� � �
0

b2

b3

�

bN

�
(13)

in which the terms on the right-hand side are given
by:

bi � ėsi�ėsi�1 � sign(si)·Ki·|si|ni (14)

�sign(si�1)·Ki�1·|si�1|ni�1, (i � 2 to N)

For the general case where the elements have differ-
ent areas and different elastic moduli, equation (13)
could be solved numerically using, e.g., Gaussian
elimination or an iterative (Jacobian or Gauss–Seidel)
method. However, a small concentration of diffusant
species typically does not significantly change the
elastic modulus; it is then reasonable to assume that
the modulus is the same in each element, Ei = E
(i = 1 to N). Furthermore, if the elements are
judiciously chosen such that they all have equal areas,
the left-hand side of equation (13) can be written as
a signed binary matrix:

�
1 1 1 … 1

1 �1 0 … 0

0 1 �1 … 0

� � � � �

0 0 0 1 �1

��
ṡ1

ṡ2

ṡ3

�

ṡN

� � E·�
0

b2

b3

�

bN

� (15)

As shown in the appendix, the matrix on the left-hand
side of equation (15) can be analytically reduced to
the N×N identity matrix, and the system of N equa-
tions thereby solved in closed form (equation (A4)).
The accuracy of the solution can be selected by vary-
ing the number of elements, N. For ease in numerical
implementation, this solution (equation (A4)) can be
rewritten in a recursive form, in which ṡ1 is computed
directly as:

ṡ1 �
E
N

·�N
j � 2

bj·(N � 1�j) (16a)

and each subsequent term is computed by iterating
the value of i and using:

ṡi � ṡ1�E·�i

k � 2

bk, (i � 2 to N) (16b)

or,

ṡi � ṡi�1�E·bi, (i � 2 to N) (16c)

Simulation of the dynamic process of chemical
cycling involves computing the stress state at many
discrete moments during the cycle. At any instant in
time, the stress state is fully known, and the rate of
change of that stress state is calculated from equation
(16). Then, a finite time step �t is applied and the
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stress state is updated using a forward-difference
approximation:

st��t
i � si

i � ṡt
i·�t, (i � 1 to N) (17)

The strain in each element is the same by assumption,
so the instantaneous strain of the specimen is com-
puted using the same running-integral approach:

et��t
l � etl � ėtl·�t (18)

where l is an arbitrarily chosen integer between 1 and
N, and the instantaneous strain rate is calculated from
equation (10). For the cases considered here, the
strains experienced by the specimen are always quite
small (usually less than 1% and always less than
3.5%); the lateral contraction of the elements can thus
be reasonably neglected with respect to the diffusion
problem described below.

4.3.2. Diffusion and chemical strains. Knowing
the creep and elastic behavior of the material to be
modeled, the above mechanics model is lacking only
information regarding the chemical strain evolution
during chemical cycling. As described earlier, the
chemical swelling strain is simply proportional to the
local concentration of hydrogen, with a pro-
portionality constant F � �n/3·� (equation 4). Thus,
the chemical strain is a simple function of the local
concentration of diffusant, and can be calculated from
an appropriate solution to Fick’ s second law of dif-
fusion:

∂c
∂t

� D·�2c (19)

where the diffusivity D is assumed concentration-
independent. The boundary conditions on equation
(19) are described by the conditions of the chemical
cycling. On the charging half-cycle, the specimen is
taken to be initially at a uniform concentration
co = 0, and exposed to a constant surface concen-
tration cs = ceq, where ceq is the equilibrium concen-
tration of the diffusant species at the temperature and
pressure of the experiment. On the discharging half
cycle, the specimen is initially at co = ceq, and dif-
fusion proceeds toward the surface, where the con-
centration is prescribed as cs = 0. As described in Ref.
[25], more complex boundary conditions can be con-
sidered, but we limit ourselves to the perfect square
chemical cycle in the present work.

For the long cylinder geometry, all diffusion is
assumed to occur radially, normal to the stress axis
of the specimen. With the prescribed conditions for
either charging or discharging, the appropriate sol-
ution to equation (19) is [57]:

c � (co�cs)·�1�
2
a
·�	
m�1

Jo(r·am)
(a·am)

·
1
am

(20)

·exp(�D·a2
m·t)� � co

where a is the cylinder radius, r is the radial coordi-
nate, Jy is the Bessel function of the first kind of order
y, and am are the positive roots of J0(a·am) = 0.

As described previously, the mechanical model
requires that the elements comprising the cylinder all
have equal cross-sectional area. The most convenient
division is to select N�1 concentric cylindrical shells,
surrounding a solid cylindrical inner element, such
that all of the elements have equal areas (Fig. 5). We
take the first element (i = 1) to be at the surface of
the cylinder, and the last element (i = N) to be the
solid cylindrical core. Then we can derive a simple
recursive relationship to determine the inner radius of
each element, rinner

i , which is equal to the outer radius
of the subsequent element, rinner

i = router
i + 1 (i = 1 to

N�1). The first element is bounded by router
1 = a and:

rinner
1 � a·�N�1

N
(21a)

and the subsequent element boundaries are found
from:

rinner
i � �N·(router

i )2�a2

N
, (i � 2 to N) (21b)

The average concentration in each element can
now be determined using:

c̄i �
2

(router
i )2�(rinner

i )2· 	
router
i

r
inner
i

c·r·dr (22)

and, finally, the rate of chemical strain evolution is
determined by combining equations (20), (22) and
(4), and differentiating with respect to time:

ėsi �
co�cs

(router
i )2�(rinner

i )2·

4
a
·D·F·�	

m�1

exp(�D·a2
m·t)· (23)

router
i ·J1(router

i ·am)�rinner
i ·J1(rinner

i ·am)
J1(a·am)

4.3.3. Comparison with experiment. The model
detailed in the previous sections allows the instan-
taneous stress and strain state in the specimen to be
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calculated by stepping sequentially through time. At
each time step, the chemical swelling rates (equation
(23)) are input directly into equations (14) and (16),
from which the instantaneous rate of stress change is
computed in each element. The stress state, which
must be known, is then updated with equation (17);
in this formulation, the constant applied stress is
introduced as an initial condition; at t = 0, si = sA,
for i = 1 to N.

As with any implicit finite-difference method,
equations (17) and (18) are only valid for sufficiently
small time steps; larger time steps lead to numerical
instability. In particular, the early moments of each
chemical half-cycle require extremely small time
steps (�10�4–10�5 s for the conditions used in the
subsequent examples). Additionally, the summation
in equation (23) is slowly convergent at short times,
so a large number of terms (we use 250) need to be
computed to insure a reasonably accurate depiction
of diffusion. Further details of the computational pro-
cedures are available in Ref. [58].

In applying this model to the present experiments,
we employ a cylindrical geometry with a radius of
a = 2.5 mm. During the experiments, this radius
decreased somewhat (at most �9%) due to plastic
elongation of the specimens, but this contraction was
found to produce no significant variation in the pre-
dictions of the model. In the model, N = 100 concen-
tric annuli of equal cross-sectional area are defined,
and the stress and strain state in each is tracked during
a 24-min chemical cycle. The first half of the cycle
involves diffusion with a fixed hydrogen concen-
tration at the surface of ceq = 7.3 at% (calculated
earlier), and the second half-cycle involves a fixed
surface concentration of c = 0 at%. The shear modu-
lus of b-Ti at 1030°C is G = 16 GPa [44], from which
the Young’s modulus E = 44 GPa is calculated using
E = 2·G·(1 + n), where the Poisson’ s ratio of b-Ti is
taken as n = 0.36 [59]. The creep behavior of Ti-6Al-
4V at 1030°C is described by equation (1), using the
parameters determined experimentally (K = 4.8·10�7

MPa�2.8 s�1 and n = 2.8, Fig. 1). As described in the
previous section, the chemical swelling of the speci-
men occurs linearly in concentration, to a maximum
concentration of ceq = 7.3 at%. Since the experiments
in this work could not unambiguously determine the
swelling strain, �es, we examine the full range of
possible values �es = 0.08�0.11% by using both the
upper- and lower-bounds in the model. These bounds
correspond to a range for the swelling constant
F = 0.11�0.15 (defined as �es/ceq). Finally, the diffu-
sivity of atomic hydrogen in various b-Ti alloys (but
not Ti-6Al-4V) has been reviewed by Christ et al.
[60], and spans a broad range (5·10�6�3·10�4 cm2/s)
at 1030°C; we take an average value, D = 7.5·10�5

cm2/s.
This model, with the input parameters described

above, requires no additional adjustable parameters,
and fully includes the effects of swelling, internal
stress plasticity, and creep. Therefore, the predictions

of the model can be directly compared with the
experimental data, without the need to separate these
contributions from one another. Of particular interest
is the strain increment evolved after a complete
chemical cycle, �e. In Fig. 6, the experimental values
of �e from Fig. 3 are plotted against the applied
stress, on linear axes. At low stresses the data fall on
a line, with a deviation to a larger stress-dependence
as the stress is increased. Shown for comparison are
the predictions of the analytical model, using both the
upper- and lower-bound values for the swelling strain,
�es. Clearly, the predictions of the model are not
strongly affected by the allowable variations in the
swelling strain. Additionally, the model predictions
are in excellent agreement with the experimental data
over the full range of investigated stresses, both at
low stresses, where the model and data exhibit the
linear �e vs. s relationship expected for internal-
stress plasticity, and at higher stresses, where the data
and model both exhibit a smooth divergence to larger
strain increments. This divergence is also typical for
internal-stress plasticity by thermal cycling [10, 18,
40, 61]; when the external stress is very large com-
pared to the internal stresses, deformation occurs
primarily due to the external stress, according to the
typical deformation power-law of the material.

In addition to the net deformation after a complete
chemical cycle, the model is also capable of pre-
dicting the complete strain history during a hydrogen
cycle. In Fig. 7, the predicted evolution of strain is
shown for four different applied stresses, and com-
pared with experimental data. For this purpose, the
upper-bound swelling strain (�es = 0.11%) presented
a better agreement with the data and most of the
model output in Fig. 7 thus uses this value; an
example of the model output with �es = 0.08% is also
shown for a single stress level. The model predicts

Fig. 6. Strain increment after each complete chemical cycle as
a function of the applied tensile stress (from Fig. 3), compared

with the predictions of the analytical model.
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Fig. 7. Strain evolution during a single 24-min chemical cycle,
experimental data (points) compared with the model predic-
tions (lines), using the upper-bound swelling strain,
�es = 0.11% (solid lines), or the lower-bound value,

�es = 0.08% (dashed line).

the general shape of the curves with accuracy, includ-
ing the rate of swelling expansion, the steady-state
deformation observed after the completion of hydro-
gen charging or discharging, and the total strain
developed at the end of the cycle (Fig. 6).

In Figs 6 and 7, the small disagreement between
the model and the experiments is probably due to sev-
eral factors, including uncertainty in the hydrogen
diffusivity and creep parameters, neglecting the kin-
etics of hydrogen sorption and desorption from the
specimen surface, and the assumption of a simple uni-
axial stress state. However, the model predicts the
average strain rate during thermal cycling to within
about 15% over the stresses investigated. We thus
believe that a more complex modeling approach
would only achieve marginal improvements in predic-
tive power, and this simplified approach captures the
essential physics of chemical cycling deformation.

4.4. Internal stress during chemical cycles

Because the model used here tracks the stress state
in each element of the specimen through the chemical
cycle, it can give a quantitative picture of the internal
stress distribution due to chemical swelling gradients.
Figure 8 shows a map of the internal stress state dur-
ing a modeled cycle with s = 0 and �es = 0.11% (i.e.,
the chemical stress state), at all points in the cylinder
(from the center, r/a = 0, to the outer surface,
r/a = 1), with stresses ranging from 0 MPa (white) to
18 MPa (black). In the following paragraph, we con-
sider the dynamic stress state shown in Fig. 8 in terms
of the physical processes occurring within the cylin-
der.

At the start of chemical cycling (t = 0), the surface
concentration of hydrogen is instantaneously fixed at

Fig. 8. Map of the longitudinal stress state during chemical
cycling of Ti-6Al-4V, as predicted by the analytical model;
regions in tension and compression are denoted by T and C,

respectively, and dotted lines show the contours of s = 0.

c = ceq, while the rest of the cylinder is hydrogen-
free. The surface of the specimen therefore experi-
ences a large driving force to expand, but is con-
strained by the rest of the cylinder. Thus, the surface
layers of the cylinder are loaded elastically in com-
pression, and carry the largest stresses observed dur-
ing cycling. To maintain axial force balance, the
remainder of the cylinder is loaded in tension at more
modest stress levels. After this initial rapid charging
of the surface layers, those layers are effectively
hydrogen-saturated, and do not experience additional
chemical strains; the surface compressive stresses
thus relax by creep, until there is essentially no stress
carried by the surface layers (e.g., t�30 s in Fig. 8).
Thereafter, as the interior portions of the specimen
become charged with hydrogen, a similar situation
arises, in which the specimen center experiences com-
pressive stresses, and the surface layers carry tension
to meet the axial force balance. As time progresses
and the entire specimen becomes saturated with
hydrogen, the internal stresses (compressive in the
specimen interior and tensile at the surface) decay by
creep, to very low levels near the end of the half-
cycle (�0.5 MPa). Upon hydrogen discharging, the
events described above are essentially replayed, but
with the sign of the stresses reversed, due to the
shrinkage which attends the loss of hydrogen from
the specimen.

In both experimental and theoretical studies of
internal stress plasticity, it has often been noted that
the linear flow law observed at small applied stresses
breaks down as the stress is increased, and the
material deforms according to a typical power-law
[10, 12, 17, 18, 40, 61]. The stress range over which
this transition occurs is roughly characterized by the
internal stress state due to the mechanism providing
internal mismatch. For example, Sherby et al. [10, 62,
63] derived a simple model for internal stress plas-
ticity, which they applied to the case of anisotropic
thermal expansion of Zn and U [10]. In their model,
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the thermal mismatch gives rise to an internal stress,
si. When the applied stress is small compared to si,
these authors predict a linear flow law. Conversely,
if the applied stress is large compared to si, the model
yields a deformation power-law. A similar relation-
ship is found by Sato and Kuribayashi [40] for the
case of thermal expansion mismatch between a
spherical particle and the surrounding matrix, and by
Mitter [64] and Schuh and Dunand [18] for the case
of an allotropic phase transformation. Several numeri-
cal models have yielded similar results [5, 65, 66].

In the cases described above, the critical stress, sc,
which defines the transition from linear to power-law
behavior is the internal von Mises equivalent stress,
si

eq, averaged over the volume of the deforming
phase, V, and over the duration of the cycle, �t:

sc �
1

V·�t
·	
�t

	
V

si
eq·dV·dt (24)

Because the model stress state is assumed to be sim-
ply uniaxial, the internal equivalent stress, si

eq = |si|,
where the internal chemical stress si is determined in
the absence of any applied stress (s = 0). Because of
the discretization of the specimen cross-section in the
model, the volume integral in equation (24) is
replaced with a finite sum over the N =100 concentric
annuli used in the computation. The time-integral in
equation (24) is then computed numerically over the
duration of the cycle.

Figure 9 shows the time dependence of the internal
equivalent stress during hydrogen cycling with
�e = 0.11%, averaged over the specimen volume. It
shows, in more compact form, the same evolution of
stress depicted in detail in Fig. 8. The initial large
stresses are due to the steep chemical gradients near
the specimen surface, which relax by creep. The sub-
sequent development of large stresses in the specimen

Fig. 9. Average von Mises stress in the Ti-6Al-4V cylinder
during a modeled chemical cycle. The hydrogen concentration
at the cylinder center (i.e., the completeness of hydrogen

charging) is also shown for comparison.

center gives rise to a local stress maximum near
t�100 s, and finally the global decay of internal
stresses by creep is observed for the rest of the half-
cycle. For comparison, the state of charging is shown
on the secondary axis in Fig. 9, as given by the con-
centration of hydrogen at the center of the cylinder;
the 12-min. half cycle time is shown sufficient to
completely charge or discharge the specimen.

With the same input parameters described earlier,
the critical transition stress sc was computed with
equation (24), by numerically integrating the output
of the analytical model over the cycle time (i.e., area
under the curve shown in Fig. 9). When the chemical
swelling strain is taken to be �es = 0.08% or 0.11%,
the average internal chemical stress is found to be
sc = 0.83 or 0.90 MPa, respectively. Thus, the model
predicts that the transition from linear deformation
behavior at low applied stresses to power-law defor-
mation at higher applied stresses should occur in the
vicinity of 0.8–0.9 MPa. Examining Fig. 6, we note
that the model does appear to first deviate from lin-
earity at s�1 MPa. Furthermore, the experimental
data follow the model in this divergence, and appear
to become non-linear first at a stress near 1.25 MPa.
These values are in good agreement with the predic-
tion of equation (24).

Although the model described above is quite suc-
cessful in predicting the experimental data, it is useful
to apply a simple criterion to determine the range of
stresses over which the linear flow law is expected to
be valid. Thus, in the following we describe an alter-
nate, simpler, method of predicting the critical
internal transition stress sc. During a complete chemi-
cal half-cycle (i.e., full charging or discharging) in
the absence of applied stress, each volume element in
the specimen experiences a strain equal to the swell-
ing strain, �es, over a time of �t/2. Thus, the net
internal strain rate is ė = 2·�es/�t. Since deformation
occurs according to the power-law of equation (1),
the internal stress corresponding to this average strain
rate is given by:

sc � �2
K

·
�es
�t �

1
n

(25)

This expression has a similar form to that derived by
Greenwood and Johnson [12] for the case of trans-
formation-mismatch stresses. Using the two bounds
on �es described earlier (0.08% and 0.11%), as well
as the experimental values for the creep parameters
K and n and the full cycle time �t = 24 min, equation
(25) gives values for the critical transition stress of
sc = 1.2�1.3 MPa. These values are in good agree-
ment with the more rigorous calculations based on
equation (24) and the analytical model (sc = 0.83�
0.90 MPa), as well as the approximate value obtained
from the experimental data (sc�1.25 MPa). Thus, the
simple approximation of equation (25) may be used
to determine the stress range over which the linear-
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and power-laws may be expected during chemical
cycling.

4.5. Effect of temperature on internal stress plasticity

Internal stress plasticity has been frequently con-
sidered as a shape-forming technology, as it allows
materials which are normally difficult to deform to
exhibit superplastic behavior [1, 67, 68]. For ther-
mally-induced mismatches, the effect of temperature
(i.e., cycle shape, amplitude, and average
temperature) on global deformation behavior is of
considerable interest as a processing parameter [18,
69], and thermal inhomogeneity can lead to premature
failure [70]. In the present case of chemical-swelling
induced internal stress plasticity, a change in tempera-
ture leads to changes in many important material
properties (i.e., elastic modulus, creep rate, hydrogen
diffusivity, and equilibrium hydrogen concentration)
which impact the operation of this deformation mech-
anism.

In this section, we briefly consider the effect of test
temperature during chemical cycling of Ti-6Al-4V,
by performing a parametric study with the analytical
model. We consider a temperature range of 1000–
1100°C (all within the b-field of Ti-6Al-4V), while
maintaining a constant cycle time of 24 min, and the
same half-cycle hydrogen pressures, P = 0 and 3.8
kPa. The temperature dependence of the elastic
modulus is taken from Ref. [44] for pure b-Ti, and
an Arrhenius temperature dependence (with acti-
vation energy Q = 153 kJ/mol for pure b-Ti [44]) is
assumed for the creep parameter K. The diffusivity
of hydrogen in Ti-6Al-4V is also assumed to have the
same activation energy as for b-Ti, Q = 28 kJ/mol,
from Ref. [41]. Finally, the equilibrium concentration
of hydrogen on the charging half-cycle is tempera-
ture-dependent through equation (5).

The predicted strain histories during hydrogen-cyc-
ling at various temperatures are shown in Fig. 10. As
expected, the heights of these curves are significantly
different, primarily due to the decrease in hydrogen
uptake with temperature. However, it is somewhat
unexpected that the strain developed after a complete
chemical cycle is virtually identical across the full
range of temperatures. This lack of temperature sensi-
tivity has several implications for possible implemen-
tation of internal stress plasticity in shape-forming
applications. First, the strain evolved during a chemi-
cal cycle cannot be increased by a modest increase in
temperature. This prediction is important, since lower
operating temperatures are easier and less costly to
sustain, lead to less contamination of the material by
absorption of atmosphere-borne impurities, and
induce less degradation of the processing equipment.
Although hydrogen diffusion will be faster at elevated
temperatures, and could lead to more rapid chemical
cycles, the impact on the net strain rate will be small.
Second, stringent control of thermal gradients is not
necessary for chemically-induced internal stress plas-
ticity. Although microstructural superplasticity and

Fig. 10. Predicted hydrogen-cycling histories for Ti-6Al-4V at
various temperatures in the b-phase field under an applied ten-

sile stress of s = 0.5 MPa.

thermal-cycling induced internal stress plasticity
require thermal homogeneity to prevent necking [70],
even large thermal gradients are not expected to sig-
nificantly affect the strain rate during chemical cyc-
ling.

5. CONCLUSIONS

Internal stress plasticity requires the simultaneous
presence of internal mismatch stresses and an external
biasing stress. In the present work, we have exper-
imentally demonstrated, for the first time, that internal
stress plasticity can occur due to the presence of
chemical stresses, caused in this case by dynamic
concentration gradients produced by cyclic
charging/discharging of b-phase Ti-6Al-4V with
gaseous hydrogen. Tensile deformation experiments
at 1030°C involved alternating exposure to pure
argon and an argon/hydrogen mixture. The cyclic
absorption and desorption of hydrogen from the metal
induced chemical stresses, which were biased by the
external tensile stress. The main points of this work
are listed below:

� In a static atmosphere of either pure Ar or
Ar/3.66% H2, b-phase Ti-6Al-4V deforms by
power-law creep with a stress exponent near three
at low stresses (below about 5 MPa). Dissolved
hydrogen does not significantly impact the iso-
thermal creep behavior of the alloy.

� During chemical cycles of 24 or 30 min duration,
specimens were found to deform at rates faster
than by isochoral creep in a constant-composition
atmosphere, particularly at stresses below about
1.5 MPa. Additionally, the average strain rate dur-
ing chemical cycling was found to be proportional
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to the applied stress. These two characteristics
demonstrate the operation of internal stress plas-
ticity during chemical cycling.

� A new analytical model has been developed to
consider the effect of diffusion and chemical
strains on uniaxial creep. The model has been
applied to our experimental data using input para-
meters determined experimentally in this work and
taken from the literature, without adjustable para-
meters. It predicts the strain evolution during
chemical cycling with accuracy, as well as the
strain developed after a complete cycle within
about 15% for all of the investigated stresses.

� The average internal equivalent stress was calcu-
lated using the analytical model, and was found to
accurately characterize the transition from the lin-
ear flow law observed at low stresses to a power-
law at higher stresses. Also, a simple expression
was developed to predict this transition point with-
out the need for a more complex model.
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APPENDIX A

In this appendix we show how the system of N
equations, with N unknowns ṡi, described by equation
(15) can be solved analytically. First, the coefficient
matrix is bidiagonalized by eliminating all of the
terms but the first in the upper row. This is
accomplished by adding the Nth row, twice the N-1st
row, thrice the N-2nd row, etc., to the first row. Thus,
each row, numbered j, is added to the first row
(N + 1�j) times, giving:

�
N 0 0 … 0

1 �1 0 … 0

0 1 �1 … 0

� � � � �

0 0 0 1 �1

��
ṡ1

ṡ2

ṡ3

�

ṡN

� (A1)

� E·�
�N
j�2

bj·(N � 1�j)

b2

b3

�

bN

�

or, dividing the first row by N and the remaining rows
by �1,

�
1 0 0 … 0

�1 1 0 … 0

0 �1 1 … 0

� � � � �

0 0 0 �1 1

��
ṡ1

ṡ2

ṡ3

�

ṡN

� � E·�
S

�b2

�b3

�

�bN

� (A2)

in which

S �
1
N

·�N
j�2

bj·(N � 1�j) (A3)

Equation (A2) can now be solved for ṡi as follows.
First, the upper row is added to the second row. The
resulting second row is added to the third row, the
subsequent third row is added to the fourth, as so on,
until the matrix is reduced to the identity matrix, I.
The solution of the system of equations (equation
(15)) is then found as:

�
ṡ1

ṡ2

ṡ3

�

ṡN

� � E·�
S

S�b2

S�b2�b3

�

S��N
k�2

bk

� (A4)

Thus, the instantaneous rate of stress change can be
computed from knowledge of the stress state, elastic
and creep constitutive behavior, and a description of
the chemical swelling behavior of the material.


