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Abstract
The development of high temperature aluminum alloys
able to operate up to 400 ºC is crucial to replace steel and
titanium and decrease the mass of vehicles in the
automotive and aerospace industries. This review relates
the past two decades of aluminum alloy engineering done
at Northwestern University focusing on developing
coherent L12 Al3M nanoprecipitates strengthened alu-
minum alloys that are coarsening and shear-resistant at
high temperature. Starting with the Al-Sc binary system,
each new generation of alloys has become more complex
to improve the alloy’s mechanical properties and coars-
ening resistance at high temperatures. The effects of
rare-earth (Er, Y, Sm, Gd, Tb, Dy, Ho, Tm, Yb, Lu),
transition metals (Zr, Ti, V, Nb, Ta), inoculants (Si, In,
Sb, Sr, Ge, Zn) and solid solution (Mg, Li) elements onto
the L12 Al3M precipitates is reviewed. The most recent
alloys have optimized strength, coarsening resistance and
lower prices, opening the doors to wider application uses.
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The automotive and aerospace industries have steadily
reduced the environmental footprint of vehicles by making
more efficient use of fuel. One way to achieve this goal is to
decrease vehicle mass by an increased use of low-density
aluminum alloys [1]. Those light-weight aluminum alloys

are limited, however, to temperatures below *220 °C due
to the dissolution or phase transformation of their strength-
ening nanoprecipitates. To utilize aluminum alloys for
high-temperature applications in automotive and aerospace
applications, one approach is to create coherent L12 nano-
precipitates, which strengthen the alloy by impeding dislo-
cation motion and which are stable and coarsen slowly by
diffusion at the operating temperature, using slow-diffusing
elements. [2].

Several slow-diffusing transition elements (M) form
nanometric diameter Al3M (L12) nanoprecipitates when
precipitated from a supersaturated aluminum solid-solution
[2], the most widely studied and least dense element being
Sc. Trace amounts of Sc increase drastically the strength of
aluminum alloys due to the formation of a high number
density of nanometric Al3Sc (L12) nanoprecipitates coherent
with the aluminum matrix [3–13]. For example, the micro-
hardness of pure aluminum (200 MPa) can be increased
fourfold by the addition of 0.18 at.% Sc [14, 15]. Due to the
relatively high diffusivity of Sc, only a few hours at 300–
350 °C are needed to achieve optimal precipitation of
coherent Al3Sc (L12) nanoprecipitates and achieve peak
microhardness. The alloy’s long-term use cannot, however,
exceed *300 °C due to the coarsening of Al3Sc nanopre-
cipitates [14, 15].

Due to the small diffusivity of zirconium in aluminum [2],
precipitation strengthening of Al–Zr alloys is extremely
sluggish, generally needing more than 100 h of aging to
achieve peak microhardness [16–21]. The metastable Al3Zr
(L12) nanoprecipitates achieve relatively small number
densities, so the strengthening effect is smaller than when
using Sc, thus limiting usage of Al–Zr alloys. Al3Zr (L12)
nanoprecipitates exhibit, however, a much higher coarsening
resistance than Al3Sc (L12) nanoprecipitates. Alternatively,
Er has a larger diffusivity than Sc [2, 22], and thus Al3Er
(L12) nanoprecipitates nucleate and grow at low tempera-
tures and Al–Er alloys suffer from an early loss of strength
[23], preventing the use of Al–Er alloys for high-temperature
applications. Due to the high lattice parameter mismatch
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between coherent Al3Er (L12) nanoprecipitates and
the Al-matrix, those nanoprecipitates impart a high
creep-resistance to Al–Er alloys.

The addition of Zr or Er to Al–Sc alloys respectively
results in improvements in coarsening or creep resistance. In
Al–Sc–Zr alloys, the coherent Al3Sc (L12) nanoprecipitates,
which form during the early stages of aging serve as
heterogeneous sites for precipitation of Zr, resulting in the
formation of coherent core-shell Al3(Sc,Zr) (L12) nanopre-
cipitates, with the core enriched in Sc and the shell enriched
in Zr [9, 24–28]. Due to the formation of this Zr-rich shell
with a small diffusivity, the precipitate coarsening rate is
significantly reduced. Al–Sc–Er alloys behave similarly [29,
30]: Er atoms form nuclei onto which the Sc atoms precip-
itate, forming an Er-rich core surrounded by a Sc-rich shell.
In this case, the Sc-shell prevents fast coarsening of coherent
Al3(Sc,Er) (L12) nanoprecipitates at elevated temperatures,
just like Zr slows coarsening of coherent Al3(Zr,Sc) nano-
precipitates. The high number density of Al3Er nuclei is
maintained during aging, permitting the attainment of higher
volume fractions and thereby increasing slightly the strength
of the alloy at peak microhardness. Most importantly, the
Er-rich core increases the lattice parameter mismatch of the
nanoprecipitates with the Al-matrix, thereby increasing the
creep resistance of the alloy [30].

Other rare-earth elements have been investigated for the
large lattice parameter of their Al3RE (L12) nanoprecipitates.
In addition to Er, micro-additions (0.02 at.%) of Y, Sm, Gd,
Tb, Dy, Ho, Tm, Yb or Lu, were investigated in Al-0.06Sc
at.% [29–31]. Due to the faster diffusivity of the RE ele-
ments as compared to Sc, they are enriched in the core of the
nanoprecipitates. The large lattice parameter mismatch of
these core-shell Al3(Sc,RE) nanoprecipitates, created by the
RE addition induces a drastic increase of creep strength at
300 °C. Based on microstructural characterization, micro-
hardness, creep experiments and price, Er and Yb were
identified as the most promising addition element to the L12
strengthen Al–Sc alloys.

The simultaneous addition of Zr and Er to an Al–Sc alloy
has the advantages of both ternary Al-based alloys [32]: (i) Er
promotes early nucleation of a high number density of nano-
precipitates with an increased lattice parameter mismatch,
which improves creep strength, and (ii) Zr slows the coars-
ening rate, thereby improving high-temperature stability of the
nanoprecipitates. For example, a quaternary Al-0.05Sc-
0.01Er-0.06Zr at.% alloy takes 30 min at 400 °C to achieve
a microhardness plateau of*450 MPa, which is stable for at
least 6 months at this temperature [32]. The nanoprecipitates
display a complex core-double shell structure, with an
Er-enriched core, a Sc-enriched inner shell and a Zr-rich outer
shell. This core-double shell is a result of the differences in the
diffusivities of the elements Er, Sc and Zr (DEr > DSc > DZr),
which is why they precipitate sequentially.

The strength of the quaternary Al–Sc–Zr–Er alloy can
further be increased by Si micro-additions [33–35].
Although Si does not form intermetallic compounds with Al,
it forms M-Si-V clusters (M is a metal and V is a vacancy),
which can diffuse faster than isolated M atoms in the a-Al
matrix, thus allowing faster growth and coarsening of the
nanoprecipitates [36]. These clusters also serve as nuclei for
heterogeneous precipitation and this increases the number
density of nanoprecipitates and their volume fraction. For
example, addition of 0.05 at.% Si to an Al-0.055Sc-
0.005Er-0.02Zr at.% alloy increases the peak microhard-
ness by 50 MPa, while reducing the aging heat treatment
time from 1 h to 15 min [34]. Higher concentrations of Si
further increase the alloy’s strength [35]. Due to the
enhanced solute diffusivity induced by silicon, the higher the
Si concentration is, the faster the nanoprecipitates coarsen.
Atom-probe tomography (APT) [37, 38] experiments
demonstrate that Si additions also modify the concentration
profiles associated with the nanoprecipitates. The nanopre-
cipitates exhibit a Sc/Er/Si enriched core, Si being located on
the Al-sublattice, surrounded by a Zr-enriched shell instead
of the core-double shell observed in Si-free alloys [34, 35].
The mechanisms underlying this structure are presently
unclear, although it has been proposed to be due to either
co-precipitation of (Al,Si)3(Sc,Er) or due to the homoge-
nization of the core-shell-structure during aging.

We investigated the use of In, Sb, Sr, Ge and Zn as a way
to increase the number density of nanoprecipitates [39]. As
for Si, these inoculants partition to the L12 nanoprecipitates,
as evidenced by LEAP tomographic analyses. These ele-
ments were usually found in the shell of the nanoprecipi-
tates, alongside Zr. Antimony, however, stands out from the
other elements due to an improvement of strength after long
aging times. Because Si is a common impurity in
commercially-pure aluminum, its use as an inoculant is the
most convenient.

Attempts have been made to produce Sc-free Al–Er–Zr
[40, 41] and Al–Er–Zr–Si [42] alloys by increasing strongly
the Er concentration (0.04 at.%) and the Zr concentration to
0.1 at.%. As shown by Wen et al. [40, 41], additions of Zr to
Al–Er alloys reduce the coarsening rate of the Al3Er nano-
precipitates due to the formation of a Zr-enriched shell. The
Al-0.04Er-0.08Zr alloy achieves a peak microhardness of
540 MPa after 64 h of aging at 400 °C. Due, however, to the
sluggish diffusion of Zr in the aluminum matrix, the Al3Er
nanoprecipitates experience early coarsening behavior
before the Zr-shell forms. There are no isothermal aging data
on Al–Er–Zr alloys with Si additions; it is, however,
expected that Si will accelerate the precipitation kinetics and
causes stronger strengthening as detected for Al–Yb–Zr–Si
alloys [43].

Although Sc-free Al–Er–Zr alloys are strong and inex-
pensive, the long aging times necessary to achieve peak
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microhardness is a major drawback. With the accumulated
knowledge from the past approximately 15 years of research
on L12 forming elements and inoculants, rather than elimi-
nating Sc from the Al–Sc–Er–Zr–Si alloys we maintained
the Sc concentration of the alloy as small as possible, to
minimize the alloy’s cost [44, 45], but sufficiently high to
prevent early coarsening of Al3Er nanoprecipitates, by either
forming a Sc-enriched shell or by co-precipitating with Er,
thereby forming Al3(Sc,Er) (L12) nanoprecipitates. We then
compensated for the low Sc concentration by increasing the
Zr concentration, while maintaining the Si concentration
required to accelerate Zr precipitation. As compared to the
previous Al-0.055Sc-0.005Er-0.02Zr-0.XY Si (at.%) alloys
[34, 35], the majority of the expensive Sc has been replaced
by the much less costly Zr, thereby reducing the Sc con-
centration by a factor 4 (from 0.055 to 0.015 at.%), and
increasing concomitantly the Zr concentration by the same
factor (from 0.02 to 0.08 at.%). To avoid the rapid coars-
ening of nanoprecipitates, due to the high Si concentration
used previously [35], a relatively small Si concentration of
0.10 at.% was utilized. The very small Er concentration
(0.005 at.%) remains unchanged. This low-Sc, high-Zr
Al-0.08Zr-0.014Sc-0.008Er-0.10Si alloy achieved success-
fully a similar microhardness (*575 MPa) as the previous
Sc-rich alloy, while demonstrating good coarsening resis-
tance at high temperatures at a lower price (estimated at *6
USD/kg vs. *16 USD/kg [46, 47]). LEAP tomographic
analyses revealed the formation of a nearly stoichiometric
Al3Zr shell enveloping a Sc- and Er-enriched core (Fig. 1),
highlighting the strong confining effect of Zr on these two
elements [44, 45]. The creep resistance of this alloy at 300 °
C is comparable to an Al-0.08Sc binary alloy. Zirconium
being the main alloying element, annealing for 24 h is
necessary to achieve a peak microhardness, which is a

significant improvement when compared to the hundreds of
hours needed for the Sc-free alloys, highlighting the need to
maintain Sc at smaller concentrations.

In an attempt to increase the maximum operating tem-
perature beyond 400 °C, a temperature beyond which the Zr
diffusivity becomes too high and concomitantly coarsening
too fast, we have investigated L12 forming elements, such as
Ti, Hf, V, Nb and Ta, with diffusivities smaller than that of
Zr [49–51]. The addition of Ti to Al–Zr revealed itself
unfruitful. Although Ti was found to partition into the
Al3(Zr,Ti) nanoprecipitates [52], it had no effects on their
growth and coarsening kinetic, or preventing its transfor-
mation from the L12 to the DO23 structure at long aging
duration [18, 19], while having negative impact on creep
resistance [53]. The addition of 0.08 at.% Hf to an
Al-0.11Zr-0.045Er alloy created a number of challenges
[51]. Due to the strong peritectic segregation of Hf in the
dendritic structure, alongside Zr, homogenization annealing
lead to a loss of solute, which prevented strengthening.
A strong positive effect was observed with the simultaneous
addition of small concentrations of Si and Fe. As indicated,
Si is known to increase the precipitation kinetics and
improve peak microhardness. Iron, however, is an undesir-
able impurity that scavenges RE elements in aluminum
alloys [54]. This unexpected positive effect of Fe (when
present with Si) on strengthening opens the door to the use
of commercial-purity aluminum, whose two main impurities
are Fe and Si. The alloy reached a microhardness of
*500 MPa after 24 h of aging at 400 °C, which was
maintained for 2,000 h. As anticipated, LEAP tomographic
analyses revealed a Hf-enriched shell around the Al3(Zr,Er,
Hf) nanoprecipitates.

The addition of 0.08 at.% V to an
Al-0.07Zr-0.02Sc-0.005Er-0.06Si [49] lead to slightly
improved microhardness values and a coarsening resistance
when aged at 400 and 425 °C, when compared to the V-free
alloy, consistent with a LEAP analysis showing slight par-
titioning of V to the shell of the Al3(Zr,Sc,Er,V) nanopre-
cipitates. This segregation of V to the matrix/precipitate
interface reduces the lattice parameter misfit, which increa-
ses the coarsening resistance of the nanoprecipitates.
Although Al3V exhibit a negative lattice mismatch with the
matrix, as opposed to a positive lattice mismatch for Al3Sc,
Al3Er and Al3Zr, the creep strength of the alloy was not
reduced, and was, in fact, comparable to the V-free alloy.
Additions of 0.05 at.% of Nb or Ta was also investigated
[50], and similarly to V, these transition elements also par-
tition to the L12 matrix/precipitate interface, at concentration
levels of 1% and 0.5%, respectively. Both Nb- and
Ta-modified alloys exhibited higher peak microhardness
values after a double-aging heat-treatment (*575 and
*600 MPa) and improved coarsening resistance at 400 °C,
when compared to the V modified alloy.

Fig. 1 Typical nanoprecipitate observed by LEAP tomography in a
Al-0.08Zr-0.014Sc-0.008Er-0.10Si alloy [44, 45] and its associated
proximity histogram [48]. The Zr enriched shell envelops the
Er-, Sc- and Si- enriched core, improving the coarsening resistance at
high temperature
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Over the last two decades of research at Northwestern
University, each new generation of L12-strengthened alu-
minum alloy has further pushed the upper use temperature in
terms of coarsening and creep resistance, which are both
intimately linked with maintaining nano-size, coherent L12-
structured nanoprecipitates. Starting with a maximum tem-
perature of 300 °C for the extremely expensive binary Al-Sc
and ternary Al–Mg–Sc alloys, we have progressively
increased the complexity of the alloy by controlled
micro-additions of transition metals (for coarsening resis-
tance), lanthanoids (for nucleation improvement and creep
resistance) and metalloids (for nucleation and diffusivity
improvements), while also considering solid-solution
strengthening, with Mg [55, 56] or Li [57, 58], secondary
nanoprecipitates (e.g., metastable coherent Al3Li (L12)
nanoprecipitates [59]), and oxide dispersoids [60]. Our most
recent aluminum superalloys can withstand temperatures in
the 400–425 °C range due to the improved coarsening
resistance of the alloy with similar or improved mechanical
properties and with the additional benefit of a significant
reduction in the cost of the alloy.
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