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Abstract—Transformation-mismatch plasticity (or transformation superplasticity) is a deformation mech-
anism occurring in materials undergoing a thermally-induced solid-state phase transformation, while subjected
to an external stress. The classic model of this phenomenon, due to Greenwood and JBhosoRdy.

Soc. Lond. 283A, pp. 403-422, 1965), is limited to the description of strain increments developed after
isothermal transformations, as for pure, allotropic metals. In the present work we generalize this model to
the case of a non-isothermal transformation, which is applicable to polymorphic alloys displaying a broad
range of transformation temperatures. Experiments conducted on Ti—-6Al-4V are used to validate the new
generalized model, which predicts the strain developed after each thermal cycle, the contributions of the
transformations on heating and cooling, and the kinetics of strain evolution during an individual [Gycle.
2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION mismatch from the stronger polymorphic phase, with
. . L . _a concurrent uniaxial external stress. They assumed a
Transformation-mismatch plasticity is a deformation o )
. . . . . constitutive creep law for the weaker phase:
mechanism which occurs in polymorphic materials,
and which requires both internal and external stresses
[1, 2]. The internal stresses are created during the
phase transformation by volume mismatch between
the polymorphic phases, while the external stress., . o . .
biases the resulting internal strains, producing a plagl-'th € th(;ur;]lax!al sttr an ratej:,\a cogstant(;ncorpg]rat-
tic strain increment after the completion of the phas'éIg l_ar& " e_mlust emperadu:E etpen ence,the ¢
transformation. When the applied external stress plied uniaxial stress, an € stress exponent.

small compared to the internal mismatch stresses, t grther assuming a complete transformation at con-

resulting strain increment is proportional to the>rant temperature, Greenwood and Johnson [3]

applied stress. The deformation is thus Nevvtoniaﬂenved "f‘ concise result, valid for small applied
(i.e., has a stress exponent of unity), leading to exceﬁt_ressesr.

tional flow stability. By thermally cycling, multiple

transformations can be induced in a single specimen, Ae = g. SAL .Aiv
allowing the accumulation of large net strains (often > 34n+1|V
100%), and classification asansformation super-

plasticity.

The seminal theory for transformation-mismatclyhere A¢ is the increment of plastic strain accumu-
plasticity was advanced 35 years ago by Greenwogsked after each transformatiodV/V is the volume
and Johnson [3], who considered the deformation @hismatch between the two polymorphic phases, and
the weaker polymorphic phase due to triaxial volumes, is an average internal equivalent stress, which can

be calculated from:
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whereAt is the duration of the phase transformationpolymorphic phase under the combined internal and
When the weaker phase deforms by time-independestternal stress state during the transformation. The
yield, Greenwood and Johnson [3] derived amveak phase is assumed to follow the typical creep
expression similar to that of equation (2) in terms opower-law of equation (1), which is generalized to
the yield stress of the weak phase rather than tlteree dimensions as [21]:
internal stresss,,.

The linear stress dependence of equation (2) has . 3 -
been validated by experiments on a host of materials & = 5 A0y 0 (4)
which creep at the transformation temperatures,
including pure allotropic metals (e.g., Ti [3-9], Zr [3,
10, 11], U [3, 12, 13)), alloys (e.g., Ti=6AI-4V [5, where the equivalent stress, is given in terms of
14, 18], Supera, TisAl [16]), metal-matrix COM- the individual stress tensor components:
posites (e.g., Ti/TIiC [8, 9], Ti-6AI-4V/TIiC [15], Ti—
6AI-4V/TiB [14]), and ceramics (BO; [17, 18]).
Some of the above experiments meet the criterion of 03, = 0% + 0% + 0%, + 203, + 202, (5)
isothermal transformation (i.e., pure, allotropic metals
and ceramics transforming at a single temperature),

while alloys subjected to “square” thermal cycles The creep law of equations (1) and (4) is tempera-

(rapid heating and cqoling se_para_ted by_ isotherm re-dependent through the parameferwhich can
periods) provide a fair approximation of isotherma e written:

transformations. When the creep law of the weaker

phase [equation (1)], the volume mismatch, and the

duration of the phase transformation are all known, A=A exp(—Q> (6)

equation (2) has been found to agree well with experi- RT

ment without the need for adjustable parameters [10,

16, 17]. Additionally, if the forward and reverse trans-

formations occur at the same temperature, then eqihereA’ is a temperature-independent constéhts

ation (2) predicts that the strain increment developedi€ activation energy for creeR,is the ideal gas con-

on the forward transformation is equal to thastant, andT is absolute temperature.

developed on the reverse transformation during ther- As the first step in their derivation, Greenwood and

mal cycling. This prediction has recently been expedohnson [3] assume that the equivalent stress state is

imentally confirmed for pure zirconium [10]. unchanging in time during the transformation. The
As summarized above, the Greenwood and Johadditional assumption that the transformation occurs

son model of transformation-mismatch plasticity haisothermally removes the time dependenceAcdnd

met with considerable success in predicting plastie allowing closed-form integration of equation (4)

strain increments during isothermal transformation®ver the duration of the phase transformation. This

most notably for pure metals. However, transformprocedure gives a tensorial relationship between the

ation-mismatch plasticity is currently of interest fortotal strain state after the transformation and the stress

shape-forming of engineering materials, includingtate. The authors subsequently use this relationship,

alloys, intermetallic compounds, and composites witie transformation mismatch tensor and its invariants,

matrices of these alloys [8, 19, 20]. Because sudkd equation (5) to derive equation (2). However, the

materials do not typically transform at a single temassumptions made in the first steps of their derivation

perature, but rather over a broad range of tempertimit the scope of their model to isothermal trans-

tures, equation (2) cannot be applied to predict tH@rmations. In what follows, we remove those

resulting strain increments during thermal cyclingdssumptions and proceed in a manner similar to that

The purpose of the present article is thus to mod&f Greenwood and Johnson [3], with no stipulations

transformation-mismatch plasticity under non-isoregarding the time- or temperature-dependence of the

thermal conditions, by generalizing the originavariablesA, n, or AV/V.

model of Greenwood and Johnson to include time- During the phase transformation, the total, or net,

and/or temperature-dependence of the physical inpsffain tensorg) in the weak phase is composed of

parameters. Additionally, we report thermal cyclingWo components, namely a plastic straip due to

experiments on Ti—6Al-4V (for which transformationcreep and the transformation mismatch stifn

occurs over a broad range of temperatures), to vali-

date the predictive capabilities of the model. g =g + g (7a)

+ 202,

2. THEORY which, upon differentiation with respect to time, is:

In the derivation of equation (2), Greenwood and
Johnson [3] consider transformation-mismatch plas- &) =g + & (7b)
ticity to be governed by deformation of the weaker
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During the transformation, volume-conserving flow v d
occurs preferentially in the-direction, in which a ér = dt
small external stress, is applied. Thus, the net strain
rate tensor is taken to have the following form:

AV

v (13b)

Using equations (11)—(13a) in equation (10) results in

g}é 0 O J the following constitutive relationship for defor-
DZ D mation in thez-direction during the phase transform-
el=10 716 0 O (8) ation:
IR 1
m o0 &0 _ ('8"8?”2).{3.’*]“.[ Sfta gy
=@ |2éX 2(ely?
. .Through gquations (7b) anq (8), an expression for 9 2 150
€ is sought in terms of the mismatch tensor compo- Y, 2]
nentsg), the creep parameters of the weaker phase 4 (&)
(throughg; and equation (4)), and the external stress .
applied in thezdirection, o. Thgzzcomponents of thg stress and strain-rate ten-
First, introduction of equation (4) into equation (5)5°'S I the above expression are relgted to the global
to eliminatec,, yields: coordinate system through a rotational transform-

ation. Greenwood and Johnson [3] thus determine

B+ B -+ 262+ 262+ 282, (9) macroscopic stre§s .and strain rglatlonshlps by averag-
o ing an equation similar to equation (14) over all poss-
3 .,[2 &, |1 ible phase orientations, i.e., over the surface of a
~ 27 3A0, sphere. Thezcomponent of the mismatch strain-rate
tensor is related to its second invariant (equation
which, when combined with equations (7b) and13b)) through a coordinate transformation [3]:

(8), becomes:
. 1. :
ey = 5-8.“."- cog(¢)- Sirt(6)

1.,V 1.,V TV
—F T + —F ey + (e—€f 1 )
+ §-'s.“."- Sirt(¢)- sir?(e)fg-'s.“."- cog(0)

+ 2:(—ef)? + 2:(—&h)? + 2:(—&)?

3 {2é—éyz]n2”1

= é?f-(lcos?(e)) (15)
= 22 3
= oA 3 A0,

5 (10)

The first and second invariants of the mismatcRnd both sides of equation (14) can now be averaged
strain-rate tensor,eM and &), are respectively over the orientation hemisphere using:

defined as:
7tl2ml2

ij-ZW-rZ- sing- - dp  (16)

00

1

BN = M M (11) x= L.
e r

2'M2_'M2 ~M)2 ~M)2
3 €7 = (&) + ()" + (2 (12) where the quantity to be averagex, is the left- or
+ 2:€0)* + 2:€))* + 2:EX)? right-hand side of equation (14). This procedure
yields, after some manipulation:
The mismatch strain tensoe}() is discussed by
Greenwood and Johnson [3], Anderson and Bishop 2 [3 A]ﬁ (éi)

[22], and Zwigl and Dunand [23], who describe the 39 = |5
1

. (17)

=M
values of the invariants”, €' in terms of the volume &
mismatchAV/V. Differentiation of this mismatch ten-

sor with respect to time allows similar expressions to

be derived for the invariants of the mismatch strain™' which

rate tensor:
/2

) e\ £ 1 9¢& (1
w0 o) [(ad 13l o

0



202 SCHUH and DUNAND: TRANSFORMATION-MISMATCH PLASTICITY

. 1-n
9 82 >n At

n 1
+ —— - sing- @ (18) 2 5n 3 AR
4 (eM)2 = _. oM =—1.
(M Ae 34[4-!’1 n 10'8” [28“"] a (21)
(6]

The integral in equation (18) is nonlinear, and, for
a given numerical value af#1, cannot be solved in
closed form. An analogous integral, in terms of thand the average strain rate during the transformation,
strain incrementAe and the volume mismatch ¢, is equal toAe/At.
|AV/V|, arises in the original derivation of Greenwood In their derivation, Greenwood and Johnson [3]
and Johnson [3]; these authors approximately sohassumed that the transformation occurs isothermally
the integral by assuming thae<|AV/V|, linearizing (A and n are constants), and that the equivalent
the integrand, and thereby deriving equation (2). Amiternal stress is time-independent. With these
discussed in [10, 16], Greenwood and Johnson’s intassumptions, and identifying the last term in the inte-
gral expression (analog to equation (18)) can also fggal of equation (21) with the inverse of the equival-
solved numerically for specific combinations of stresent stress due to the phase transformatig(see equ-
and strain increment. In the following section, weation (3)) equation (21) reduces to:
present a first-order approximate solution of equation
(18) which parallels the original Greenwood and > 5n o
Johnson [3] derivation, and which is valid at low Ae = = ..f,‘;h/l. a (22)
strain rates or applied stresses. In a later section we 34n + 1oo
discuss the solution of Eq. (18) at high strain-rates,
and describe a numerical technique which is appli-
cable over the full range of stresses and strain rategpon introduction of equation (13b) into this equ-
ation, Greenwood and Johnson’s orginal expression
for Ae (equation (2)) is recovered. Thus, equation

In order to linearize the integrand of equation (18§21) is a more general form of their model, capable
we assume that the strain ratés small compared to of incorporating time dependence of any of the input
the rate of mismatch strain developmeg}. The parameters, and which gives an identical result when
bracketed term in equation (18) can then be expand#teir assumptions are employed.
in a Taylor series, and higher order (non-linear) terms For alloys which only partially transform, or which

At

0

2.1. Linear solution

in &€ neglected, giving: transform over a broad range of temperatures, the rate
at which the internal mismatch strain develops deter-
2 mines the magnitude of the plastic strain increment
£ £ 91-n/1 2 through the integral in equation (21). The internal
g('ghn) - J{@p(l + 2'2-n'<3_ C°§9>> mismatch strain, when spatially averaged over the
0 specimen bulk, can be assumed to develop in pro-
1 portion with the volume fraction of transformed
—(5— co§9>]- sing- d phasef:
E4n + 1 el = f"AVV‘ (23)
T & 5n (19)

Equation (23) can be used in place of equation (13b)
which, when combined with equation (17) gives ao account for time- and/or temperature-dependence
closed-form expression for the instantaneous macref the rate of phase transformation. In cases where
scopic strain rate in the direction of the applied biaghe transformation occurs over a broad temperature

ing stresso: range, the change of volume fractibmvith tempera-
ture may be related tbthrough the heating or cooling
2 5Bn a3 A 1 rate of the thermal excursion.
€= 3an+ 104 2en ) 2.1.1. Isothermal transformation kinetics. To

demonstrate the use of equation (21) in predicting

Equation (20) predicts the instantaneous strain rate&nsformation-mismatch plasticity strain increments,
during the phase transformation in terms of the creape discuss here the specific case of an isothermal
properties of the weaker phase (the parametesiad transformation, as originally considered by Green-
n) and the rate of volume mismatch evolutice}\. wood and Johnson [3]. In this case, the varialfies,
The full plastic strain increment developed after andAV/V are constants, and only the phase fractfon,
complete transformation can be determined by interaries during the transformation time. With this con-
gration of equation (20) over the duration of thelition, introduction of equation (23) into equation
phase transformation: (21) gives:
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1
hat 1 , , , J
2 5n AV (3 A L s/
A= 34nt1v o 2y 'jf a9 /
N | o 0.8 / -
d=1 7
/
/s
In what follows, we consider several kinetic equation 0.6 |- 2 4 1
which describd as a function of time during the iso- f
thermal transformation, and integrate equation (24) 1 y 7
predict the strain incremeni\e. 04 r y; 1
In their work, Greenwood and Johnson [3] do no 'y 3
explicitly assume any specific transformation kinetics
but rather take the internal equivalent stress to be co 0.2} Y4 1
stant during the transformation. By comparing equ g
ation (21) and equation (23) with equation (3), we Y, ¢
note that this condition is tantamount to assuming 0 : - ! !
linear kinetic equation of the form: 0 0.2 0.4 0.6 0.8 1
t/At

(25)

Fig. 1. Kinetics of an isothermal phase transformation; volume
fraction transformedf, as a function of non-dimensional time.
Solid lines are the Johnson—-Mehl-Avrami kinetic equation
(equation (27)), compared with a simple linear-kinetic approxi-
where At is the time for a complete transformation. mation (dashed line, equation (25)).
Introducing equation (25) into equation (24) and inte-

grating yields Greenwood and Johnson’s model, equ-

ation (2).

As an improvement on this preliminary assump-
tion, we consider kinetic equations of the Johnsonk .
Mehl—Avrami type [24—27]: 2, 3, for physically-reasonable _valqes of t_he stress

exponentif=1 to 10), as shown in Fig. 2. Witd=2
and 3 equation (29) yields values bfvery near to
unity for all n; using d=1, which differs more
strongly from the linear kinetic relation (Fig. 1), gives
somewhat smaller values §f However, Fig. 2 illus-
trates that the choice of transformation kinetics does
not significantly change the predicted strain

increments of equation (2), with the maximum differ-

his integral has been evaluated numericallydetl,

f = 1—-exp(Ct9) (26)

whereC is a kinetic constant and=1, 2, or 3. We
approximate the transformation time by the time
required to achieve a fractiofh of transformed vol-
ume (i.e.t=At whenf = f*); the critical volume frac-
tion is chosen arbitrarily a& = 0.99. This boundary
condition allows equation (26) to be rewritten as:

1.05
t d
f= 1—(1—f*)(“) 27
1
Figure 1 plotsf againstt/At given by equation (27)
with each value ofil as a parameter; the linear kinetic  0.95
approximation of equation (25) is shown for comparig
son. Introducing equation (27) into equation (24) an
normalizing timet with At gives: 09
2 5n AVo
ae = 34n + 1'7?0'5 (28) 0.85
whereo, is defined in equation (3). This expressior 0.8 . L .

is identical to equation (2) multiplied by the dimen-
sionless constard, which is given by:

10

n—1

[ —In(1—f)4d-(1-F)] " - ot (29)

E=

I

Fig. 2. Dimensionless constahifrom equations (28) and (29),

as a function of the stress exponerand the kinetic exponent

d. Dashed line is the value df for the linear-kinetic approxi-
mation (equation (25)).
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ence (withd=1) being only about 17% from the lin- 100 ' ‘ n=1
ear-kinetics approximation. Thus, the model o
Greenwood and Johnson [3] (equation (2)) is largel
insensitive to the exact kinetic path of the phase tran
formation, provided that it occurs isothermally. This 10
conclusion may explain the consistency of data se
from different studies of transformation-mismatct se M
plasticity which use different cycle times, temperag(si & )
tures, and shapes, and which therefore probably ha
different transformation kinetics [9, 10]. 1

2.2. Non-linear model

If, in contrast with the previous section, we now

assume that the strain ratds large compared to the 0.1
rate at which internal mismatch strains develelp, 0.1 1 10 100
equation (18) reduces to: g M
i I
2 T Fig. 3. Numerical solutions of Eq. (18) for selected values of
£ e |9 & |zn . the creep stress exponent,
el &l [ 4 (el)?

o]
instantaneous strain rate during the phase transform-
ation, for any applied stress. At each moment during
. . 1-n . . .
el3 ¢ T+ thermal cycling the applied stregs is known, the
= 2@ mismatch strain-rate)' is calculated from equation
(23) using physical data on the volume mismatch
When this result is combined with equation (17) VIV and the evolution of the phase fractidn.and

uniaxial creep power-law identical to equation (1) ighe tempera’gure-dependent constantsand n are
found. Thus, when the uniaxial strain rate is rapiﬂ“’.en by the isothermal creep law OT the weak phase.
(i.e., the applied external stress is large), the materi pNY these parameters in equation (17) gives a

deforms according to the creep law of the weakdiumerical value fog(e/elf’), which can then be com-

phase, and the phase transformation does not enhal ééed with the numerical solutions of equation (18)

Regea ; . .
the deformation rate or change the stress exponent(bfe" .F'g'. 3) to determme the mstantanegus strain
the deformation. rate, €. Finally, as described earlier (equation (21)),

Equations (19) and (30) consider the uniaxial strai e average strain rate during thermal cycling is found
y averaging the instantaneous strain rate over the

rate during transformation-mismatch plasticity at lo 2
and high strain rates, respectively. In order to emplo@yCIe duration:
this deformation mechanism in a forming method, it
is desirable to maximize the strain rate without _
inducing cavitation or plastic instabilities. These £=
instabilities increase with the stress exponent, which,
as demonstrated in the above discussion, diverges
from unity to a typical power-law value (e.g., 3-8 for The models presented above are a generalization
metals and alloys) as the strain rate (or applied stregssf)the established method of Greenwood and Johnson
is increased. The transition between these extremeq33, and should be capable of describing the strain
of interest to determine, for example, the maximurevolution during transformation-mismatch plasticity
allowable applied stress during a forming operatiorof complex engineering alloys which do not transform
In what follows, we describe a numerical method tésothermally. In the following sections, we describe
implement the above model at any strain rate a@xperiments on Ti—6Al-4V which can be compared
applied stress level. with the above model for complex temperature-
Without assumptions about the strain rate or stresiependent transformations.
exponent, equation (18) cannot be solved in closed
form. However g(¢/e}") in equation (18) can be evalu-
ated numerically for selected values of the ratio
gle) andn, as shown in Fig. 3. Far>1, g(e/gl!) exhi- The alloy Ti-6Al-4V was used in the form of cyl-
bits a clear transition between a linear- and a poweindrical billets, fabricated by cold- and hot-isostatic
law in /g, the transition occurring over the range pressing of elemental powders by Dynamet Tech-
0.5<¢ele)'<5. nology (Burlington, MA), as described in [28]. The
With numerical data such as those in Fig. 3, equas-received microstructures of these materials were
tions (17) and (18) can be used to determine thgpical of powder metallurgy Ti—-6Al-4V, with a col-

o
&

: J e d (31)

3. EXPERIMENTAL PROCEDURES
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ony or lath-typea+@ microstructure (see, e.g., [15, 10* ,

19]). Tensile creep specimens were machined wil O Creep, 1030°C

gauge length of 20 mm, and with circular cross-sec ® Thermal Cycling, A~2.8
tion of 5 mm diameter. The shoulder radius betwee 840-990°C o

the gauge and head sections was about 0.5 mm.
Isothermal creep and thermal cycling experiment
were conducted in a custom creep frame described 10° L A ~1.1 i
[10], under an atmosphere of flowing purified argon; . [s]
Elongation of the load train was measured with a lin”’
ear voltage-displacement transducer (LVDT) at th
cold end of the load train, and the specimen temper
ture was controlled at the gauge surface with a typ:
K thermocouple and a closed-loop thermal controlle
A second thermocouple at the specimen head w
used to verify the measurements of the controllin l .
thermocouple. 1 10
The B-phase of titanium is significantly weaker
. o [MPa]
than thea phase near the phase transformation teni-
perature [29], and, as described earlier, transfornfig. 4. Strain rate during isgthermal cre_ézppr average strain
ation-mismatch plasticity is controlled by defor-rate during thermal cycling;, as a function of applied stress
mation of the weaker polymorphic phase. Therefor€; Thermal cycles were of symmetric triangular form, 8
o - minutes in duration.
limited isothermal creep tests were performed at
103C°C, in the B-field of Ti-6Al-4V, to determine
the constitutive creep law of thg-phase at the low Q=153 kJ/mol [29], the creep data in Fig. 4 can be
stresses of interest during transformation-mismataeasonably fitted with equation (1) with=2.8 and
plasticity. A’'=0.72 MPa?# These data are in agreement with
Two types of thermal cycling experiments werdhose reported in [33, 34] for hot working of Ti—6Al-
performed; all of the thermal cycles were triangulardV at similar temperatures (1000-12@) and higher
with four-minute ramps (eight minutes for the comstresses (6.4-160 MPa).
plete cycle):

4.2. Thermal cycling: stress dependence

e Thermal cycles were performed with a lower tem- The f-transus of Ti-6Al-4V is reported to occur
perature of 848C and an upper temperature ofat about 1008C [30-32], with thea+ field span-
990°C (just below theB-transus, 1000 [30-32]), Ning from the transus to room temperature. The
at various applied stress levels between 0.5 arffésent triangular cycles (between 840 and °@90
10.7 MPa, in order to determine the stress-depefccurred completely below 1000, so the specimen
dence of transformation-mismatch plasticity. was contlnut_)usly undergoing transform_at|on, from

e Under a constant applied stress@#1.95 MPa, to B on heating, and fronf8 to a on cooling. There-
one specimen was thermally cycled between°g4dore, the strain rates measured during thermal cycling
and various upper temperatures, between 865 afte composed of only a single contributing mech-
99(rC. Finally, the isothermal creep rate at 860 anism, that of transformation-mismatch plasticity, and
was also determined at the same stress, after the effort is needed to isolate the deformation due to
thermal cycling experiments. this mechanism (as done in e.g., [8, 16, 17]). _

Figure 4 shows the thermal cycling strain rate,

All of the isothermal and thermal cycling experiment&S & function of the applied tensile stress for triangular

were allowed to reach steady-state deformation befofaermal cycles over the range 840-960 At low

creep or transformation-mismatch plasticity straigt€Sses (pelow about 5 MPa), the data in Fig. 4 fol-
rates were determined. The reported values of thern]QWV & linear trend in stress (i.e., the stress exponent is

cycling strain rate are averages over several consedl&" unity). In this range, the stress-normalized strain
tive thermal cycles at steady state. increment developed after each 8-minute cycle is

found to bedAe/dc=2.1 GPa®. This result is in
reasonable agreement with that of katal. [5] , who
4. RESULTS reported a value of 3.2 GPafor cycles between 760
and 982C of unknown shape, but approximately 30
s duration. Furthermore, Schut al. [14, 15] used
Figure 4 shows the isothermal creep rat@gfhase 8-minute triangular thermal cycles between 840 and
Ti—6Al-4V as a function of the applied uniaxial stressl03C0°C, and foundAe/dc=3.1 GPa™. This value is
at 1030C. The strain rate follows a power-law withsomewhat larger than for the 8-minute triangular
a stress exponent near three. Taking the activatiaycles depicted in Fig. 4 (2.1 GP9, but the former
energy for creep of unalloye@-phase titanium, cycles include a significant excursion into tdield,

4.1. Isothermal creep
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and therefore accumulated additional creep strain. At high stresses (equations (17) and (30)). In addition
higher stresses (above about 7 MPa, Fig. 4), the theo predicting the stress exponent, the model outlined
mal cycling strain rate diverges to obey a power-lawarlier is capable of predicting the absolute strain rate
with a stress exponent very near to that observed duturing thermal cycling, as discussed below.
ing isothermal creem~2.8. During the triangular thermal cycles in the range
In Fig. 5, the cycling strain incremetde is shown 840-990C, the heating and cooling rates were 0.625
as a function of the upper cycle temperaturg, with  K/s, which are slow enough to ensure a state of ther-
a constant lower cycle temperature of 880 and modynamic equilibrium at all points during the cyc-
applied stresg=1.95 MPa. The point at 84C cor- ling [30]. Thus, during these cycles, the diffusional
responds to the isothermal creep rat&¢ =( transformation of Ti-6Al-4V is limited not by dif-
1.8-:10" s™%) at that temperature and the same stresfysion, but by the equilibrium thermodynamics of the
As the upper cycling temperature is increased, thglloy. The cycles involve a transformation from about
strain rate increases substantially; Tat=990°C, the 23 to 99 vol%p-phase from 840to 99C°C, along a
rate is 40 times that measured during isothermal cregath shown in Fig. Al and discussed in Appendix
at 840C. A. Furthermore, the volume difference between the
phases changes dramatically over this temperature
described in Appendix A and shown in Fig. Al. The
As described in the following section, the preseffreep parameten is also temperature dependent,
experiments on Ti-6Al-4V form the basis for vali-jhrough the Arrhenius relationship of equation (6).
dation of the analytlcal modgl outlined garller. 'nThus, many of the parameters in the model (equations
what foIIows! we d|scu_ss the !m_plem_entanon of th?ﬂ) and (21)) are temperature dependent, and thereby
model for Ti-6Al-4V in predicting (i) the Stress- genendent on time through the heating/cooling rate.
dependence of the cycling strain rate in both the linear \y/q first apply the model to the low-stress, linear
and non-linear regimes, (i) the___effe_ct o.f a ChanginQegime, by evaluating equation (21). Because of the
upper cycle_ temperature, and .('_”) kinetic features 0<Eomp|exity of equation (21) and the time- and tem-
transformation-mismaich plasticity. perature-dependencies of the input parameters
5.1. Stress dependence of transformation-mismatéthescribed above and in Appendix A), equation (21)
plasticity is evaluated here by numerical integration over the

The linear relationship between stress and thermta“angular thermal cycle. Since the experimental ther-

cycling strain rate shown in Fig. 4 at low app"edmal cycles were symmetric in time, the integrations

. . o of equation (21) for both the heating and cooling half-
stresses is in agreement with the prediction of eq%- cles are identical. With the cree arameters
ation (21), which is valid in the low-stress regime. At Y . N €p para

el rmined by experiment and described earlier, and

larger applied stresses, the measured stress expont e phase fractions and volume differences given in
of ~2.8 is the same as that for isothermal cree-of P 9

phase Ti-6A-4V (Fig. 4), as predicted by the modéf\ppendix A, equation (21) can be evaluated without
' adjustable parameters, giving a predicted strain rate

of £/6=4.3.10° MPa* s%, or the strain increment
developed after each 8-minute cyclde/c=2.1
GPa. As shown by the solid line in Fig. 6, this pre-
diction is in excellent agreement with the experi-
] mental data at low stresses. At the lowest stresses
investigated €1 MPa), the agreement between model
and data is somewhat less accurate. This is most
. likely due to transformation strain ratchetting (see,
e.g., [16, 35, 36]), which might present a small nega-
tive strain contribution, skewing the data at the low-
i est stresses.
Using the same input parameters, the non-linear
model described earlier can also be implemented and
0 compared to the data in Fig. 4. Whereas equation (21)
800 850 900 950 1000 gives avalue foAe/o in a single calculation, the non-
T [°C] linear model requires thahe be calculated for a
u selected value of, and this value is iterated to deter-
Fig. 5. Strain incremende developed after each thermal cyclemine the full stress-dependence A (or €). The

between 84tC andT,, normalized by the applied stress level,resuylts of these computations are shown as the dashed
0=1.95 MPa. The experimental data points (with error bar’g

151

Ae/c 1k
[GPa™]

0.5

estimated from the sensitivity of the LVDT measurements) ar ne in Flg. 6, gnd compared with the gxperlmental
compared with the model predictions (solid line, equatiodl@ta points. Wlthoqt the. use of any ?—dJUSta_m_e para-
(21)). meters, the model is quite accurate in predicting the
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A
AD,, = ADyerr + (;) Lo (32a)
h

Ae
= )C-L-o (32b)

ADC = 7ADthermaI + (

where the subscripts h and c refer to the heating and
cooling half cycles, respectively, andis the gauge
length of the specimen. Through equations (32a) and
(32b) the slopes oAD vs. o-L indicate the individual
half-cycle contributions to the deformation.
10°¢ . s Fig. 7 shows a plot of equations (32a) and (32b)
1 10 for both the heating and cooling displacements during
s [MPa] triarjgular thermal cycles (between 840 and L)0of
a single Ti-6Al-4V specimen. The slopes of these
Fig. 6. Transformation-mismatch plasticity data (from Fig. 2)curves reflect the contributions from the two trans-

compared with the analytical models; the solid line is the pregormations, and are found to be equal, within the sen-

diction of the linear model (equation (21)) and the dashed Ilne.t. it f th t d line-fitti

is the prediction of the full non-linear model (equations (17)SI ity 0 € measurement and line-nting pro-
and (18)). cedure, Ae/o),~(Aelo);~0.9 GPa’. The sum of

these two contributionsde/oc~1.8 GPa?, is reason-
ably close to the directly measured valde, /c=2.1

absolute value of the strain rate over the full rang&Pa * and suggests error of at lea1.15 GPa* for

of stresses, within a factor 6f1.5. each of the two transformation contributions determ-
] ined by this analysis. This error is also reflected in
5.2. Effect of the cycle profile the intercepts of the trendlines in Fig. 7, which are

The data in Fig. 5, for different upper cycling tem-expected to be equal (equations (32a) and (32b)), but
peratures, were acquired using an applied stress &€ not. In summary, the strain increments after each
0=1.95 MPa. For the widest cycles (840-9@), this  triangular therm_al c_ycle are found to be comp_osed of
stress is within the linear deformation regime (théwo equal contributions from the transformations on
same data point appears in Fig. 4). Therefore, faeating gnd cooling, in agreement with the prediction
model the effect of different thermal cycle profilesOf equation (21).
shown in Fig. 5 the low-stress, linear approximation
of equation (21) is sufficient. The predictions of the
model are plotted as a solid line in Fig. 5, and are in
satisfactory agreement with the data. This agreeme
is particularly good for the largest and smallest thel
mal cycles, and within a factor of two at intermediate
values ofT,,.

5.3. Transformation strains —

The analytical model presented earlier predicts ni
only the strain accumulated after each thermal cyclqy®
but the strain increment after each transformatior<t
Specifically, for the case of equilibrium triangulary”
thermal cycles, the model predicts equal strains 1
develop on the heating and cooling transformation

In a recent publication, Zwigl and Dunand [10]
presented a means by which to assess the stra
developed on each half-cycle, and thus to test th 0.7 . \ ! s
prediction of the model (equation (21)). During the 0 20 40 60 80 100
heating and cooling half cycles, the measured LVD’ : .

. . L oL [MPamm]
displacement AD) is a combination of thermal
expansion or contraction (of the specimen and lodglg. 7. Total measured displacements during heating and coo-
train), as well as the plastic deformation due to trandnd half-cycles, as a function of the product of applied stress
and specimen length. The slope of each data set indicates the

formation-mismatch plasticity. Confining our atten'amount of transformation-mismatch plasticity deformation dur-

tion to low applied stresses, the half-cycle displacéng the heating and cooling half-cycles (equations (32a) and
ments can be written: (32D)).
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5.4. Kinetics of strain evolution Temperature [° C]
840 915 990 915 840

The analysis described in the previous section ar 1.2 -
cooling——=

shown in Fig. 7 determines the deformation after eac heating
half-cycle, averaging over many cycles at variou 1L
stresses and specimen lengths. However, equatic
(32a) and (32b) can also be used to determine tl 0.8 L
kinetics of strain evolution during a single individual
cycle, as described in the following. 06
Figure 8 shows the displacement histories for tweg/Ag
triangular thermal cycles performed on the sam 04
specimen, at stresses of 2.6 and 1.0 MPa. The
stresses correspond to full-cycle strain increments
Ae=0.53% and 0.15%, respectively. The length of th
specimen at the start of these two cycles Wwa®5.9
mm and 26.1 mm, respectively, a difference of les
than 1%.

experiment |

model

0.2

According to equations (32a) and (32b), two ther e 0 120 240 360 480
mal cycles on the same specimen at different applie
stresses exhibit identical displacements from therm.. t[s]

expansion and contractiodDerma Thus, provided Fig. 9. Deformation history during thermal cycling, found by
the length of the specimen is nearly unchanging, twaubtraction of the two displacement curves in Fig. 8, with esti-
such cycles can be directly compared to determir@ateq error band in grey. The m_odel predicti0n§ (dashe_zd line)
the instantaneous deformation due to transformatigiie 9'ven by integration Ofce(greatlon 20 at each time during the
plasticity. The difference between the two curves vee.

shown in Fig. 8, then, reveals the kinetics of strain

evg:;ﬂ(r)en Ejglingﬁoiv;ugh?eém::e%yféeéurve, found b results in significant uncertainty, as estimated by the

: . haded band in Fig. 9. The same subtraction pro-
subtracting the lower-stress curve of Fig. 8 from the " .

- . cedure was followed for several additional pairs of

higher-stress curve, and normalized by the total straln

: : _nano. curves such as those in Fig. 8, from which the error
w;e:]eorlgehiigu{;;ﬁtﬁ: (?Jr?/rét?r:SF%leggisofggn/g' b band was estimated. The shape of the band in Fig. 9

i . . uggests that the strain rate during thermal cycling
taking a difference between two large Slgnal?s somewhat more rapid at the higher temperatures
(displacement amplitude of 0.9 mm in Fig. 8), t P 9 P ’

: OFurthermore, the strain develops symmetrically in
reveal a relatively smaller effect (less than 0.1 m L
- . . A emperature; this is expected from the equal half-
displacement difference, Fig. 8); this procedure thus - . .
cycle contributions determined from Fig. 5, and pre-
dicted by the model (equation (21)) as well.
Temperature [° C] The linear transformation-mismatch plasticity
840 915 990 915 840 model discussed earlier predicts the instantaneous
strain ratee during thermal cycling (equation (20)),
which is then integrated over time to predict cycling
strain increments (equation (21)). However, equation
(20) can be integrated over an arbitrary time interval
to predict the kinetics of strain evolution during an
individual thermal cycle. Using the input parameters
described earlier and in Appendix A, integration of
equation (20) predicts the kinetics of strain evolution
shown in Fig. 9 as a dashed line, again scaled by the
total strain incremenie. The agreement between the
model and the experiment is reasonable, given the
many uncertainties in the experimental curve, and
since no adjustable parameters were employed in
the model.

15 heating cooling

o =2.6 MPa

displacement [mm]

. ! 5.5. Limitations of the model

0 120 240 360 480 As shown in the preceding sections, the modified
t [s] version of Greenwood and Johnson’s model presented
Fig. 8. Displacement history during two thermal cycles withe.arller predicts the experimental trends measured on

similar specimen lengths, at applied stresses of 2.6 and 1_TG—6A|—4V with accuracy, including the to_ta| _Sf[rain
MPa, for the upper and lower curves, respectively.  increment after a full thermal cycle, the individual




SCHUH and DUNAND: TRANSFORMATION-MISMATCH PLASTICITY 209

contributions of each transformation, and the kinetics the experiments, without the use of adjustable
of strain accumulation during cycling. However, it input parameters. The model is used to predict the
should be noted that this model, as well as Green- stress-dependence of the thermal cycling strain
wood and Johnson’s original model, are significantly rate, both at low stresses, where a linear, Newton-
simplified. Shape forming of engineering alloys or ian, flow law is observed, and at higher stresses,
metal-matrix composites by transformation super- where the strain rate diverges to a power-law.
plasticity may involve additional complexities whiche® The fraction of transformation product can be
are not specifically considered in these models, as dis- determined by varying the amplitude of the ther-
cussed below. mal cycles, leading to a thermal cycling strain rate
First, the model discussed in this paper assumes dependence on the thermal cycle profile. The new
that internal strain develops entirely in the weaker analytical model presented here captures this
phase, which deforms without constraint under an effect.
applied stresso. This simplification neglects the ® The new model predicts equal contributions to
possibilities that both phases deform, that the internal deformation upon the heating and cooling halves
stress may be partitioned between the phases, or thatof a symmetric triangular thermal cycle; the
the external biasing stress may be similarly par- present experiments validate this expectation.
titioned. Stress concentrations near weak/strong inter- Additionally, the kinetics of strain evolution dur-
faces are thus also ignored. Second, these modelsing a single thermal cycle are reasonably predicted
make no effort at describing the microstructural mor- by the model.
phology during the transformation, and thereby neg-
lect issues of constraint on the deformation. For

example, an isolated Y?'”me of Weak phase, Sgkcknowledgemen%sThis study was funded by the National
roundeq entirely by a rigid, non-deformlng phage, I8cience Foundation (SBIR #9901850), through a subcontract
constrained and unable to creep, despite experiencifign Dynamet Technology, Burlington, MA, and the US

both internal and external stresses. Additionally, th@epartment of Defense, through a graduate fellowship for C.S.

transformation of such an isolated volume to thd'€ @lso thank W. Zimmer, formerly of Dynamet Technology,
. L r supplying experimental material.

stronger phase will have only a weak and |nd|recfJ

influence on the stress state in the remaining, remote

regions of weaker phase. Finally, thermal cycling and APPENDIX A

superplastic elongation may lead to substantial micro-

structural changes, which impact the transformatioRquilibrium Volume Changes and Phase Fractions

and/or creep behavior of the material in question. This

has been found particularly true for metal matri

composites, where transformation superplastici

leads to redistribution and/or realignment of the rei

forcing phases [14, 15].

The analytical model of transformation mismatch
|asticity presented in this article requires input of the
olume mismatch between the two polymorphic
nf)hasesc( andf3 for Ti-6Al-4V), and the fraction of

each phase present at each temperature during the

thermal cycle. These data have been collected for Ti—
6. CONCLUSIONS 6AI-4V by Szkliniarz and Smolka [30], who perfor-

The model of Greenwood and Johnson [3j‘ned high-temperature X-ray diffraction studies on

describes uniaxial deformation of a material undergo-

ing an isothermal allotropic phase transformatior 1

while under a uniaxial stress (i.e., transformation-mis

match plasticity or transformation superplasticity)

Despite a strong record of success, this model 108

unsuitable for describing non-isothermal transform

ations, which are of prime industrial interest for shap 06

forming of complex alloys. In the present work we,y, £

have extended Greenwood and Johnson’s model [ p

include temperature-dependence of all of the inpt 04

parameters. Experiments on Ti—6Al-4V were conduc

ted to validate the model, and the following result: oo

found: ’

e Slow triangular thermal cycles result in strongly -1 : : : 0
temperature- and time-dependent transformatic 600 700 800 900 1000

kinetics. The adapted form of Greenwood ani Temperature [° C]

Johnson’s [3] model presented in this work takel§ig. Al. Experimentally-determined volume mismatch gad

thes_e variations SpeCiﬁca”_y into account. The PrGhase fraction of Ti-6Al-4V from [30], used as input to the
dictions of the model are in good agreement with  analytical transformation-mismatch plasticity models.
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this alloy at temperatures from 60D (in the a+p 13-
field) up to theB-transus at 100C. From these dif-
fraction data, they determined the volume fractiofg
and the lattice parameters of each phase, from which
we have calculated the volume change//V =
(Va—Vp)/Vp. The fraction ofp-phase,fs, and AV/V
from their study are shown in Fig. Al as a function}?‘
of temperature.

For use in the analytical model, the data in Fig1s.
Al were fitted with smooth polynomial functions and
evaluated at discrete temperatures during the therrﬂﬁr
cycle. The time-derivative of the phase fractidn, ,q
was subsequently calculated numerically using a sym-
metric-difference approach with a time step of 0.1 1.

22.
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