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Abstract

The thermo-mechanical behavior of thin plates subjected to a step-shaped heat ¯ux is studied analytically and ex-

perimentally. First, closed-form solutions for temperature and curvature as a function of time are derived for ortho-

tropic monolithic plates. Second, composite plates are modeled by using equivalent properties and by taking into

account a non-uniform ®ber distribution, which leads to a bilayer e�ect. Finally, experimental temperature and cur-

vature measurements on unreinforced Ti±6Al±4V plates and Ti±6Al±4V plates reinforced with unidirectional SiC ®bers

are compared to these analytical predictions. Ó 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Because monolithic and ®ber-reinforced titani-
um alloys exhibit outstanding speci®c mechanical
properties at room and elevated temperatures,
they are very attractive for aeronautical structures
subjected to severe thermomechanical conditions.
During atmospheric reentry or high acceleration,
external structures are subjected to a thermal
shock by aerofriction resulting in a rapid surface
temperature increase and a concomitant high
thermal gradient from the surface. The tempera-
ture distribution within the structure dictates its
thermal expansion and the resulting deformation,

usually described as curvature for ¯at structures
such as skins, foils or sheets. Unlike a monolithic
plate, a heterogeneous plate subjected to a uni-
form, time-independent temperature exhibits in-
ternal stresses and curvature, as ®rst analyzed by
Stoney (1909) for the simple case of a bilayer
material. Recently, Suresh and co-workers (e.g.
Suresh et al., 1994; Finot et al., 1996; Finot and
Suresh, 1996) examined the general case of multi-
layered or functionally graded materials. They
derived the curvature and internal stresses of a
plate deforming elastically or plastically, and also
considered the case of large deformations. Their
work included experimental results as well as an-
alytical and numerical solutions. While a uniform
thermal gradient in a monolithic material induces
a curvature without internal stresses (Timoshenko
and Goodier, 1970), the case of a composite is
more complex. The time-independent problem was
analyzed by Aboudi et al. (1994, 1997) for ®ber-
reinforced composites and functionally graded
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composites. These authors found that standard
homogenization schemes produce questionable
results, especially in the case of a low number of
®ber rows with large-diameter ®bers, and devel-
oped an explicitly coupled analysis to determine
moments induced by a thermal gradient for a
constrained plate.

The problem of thermal shock in composite
plates has been addressed by Mukherjee and Sinha
(1996) who performed a ®nite-element analysis
and investigated various thermo-mechanical vari-
ables as a function of time. In the present article,
we consider the case of a plate subjected to a step-
shaped heat ¯ux with convection occurring on
both sides of the plate. This de®nition of thermal
shock is di�erent from that used by other authors,
but allows comparison with simple experiments
and is close to conditions encountered in aero-
space structures. We ®rst develop an analytical
model giving closed-form solutions for the time-
dependence of the temperature and the curvature
of a monolithic plate. We then extend the model to
the case of a composite exhibiting a non-uniform
®ber volume fraction. In the case where the dis-
tribution of the ®bers within the thickness of the
plate is slightly asymmetric, we suggest that
equivalent homogeneous properties of the com-
posite can be used, provided one takes into
account a bilayer e�ect. Experimental results
for both monolithic Ti±6Al±4V and composite
Ti±6Al±4V/SiC plates are compared to the theo-
retical analysis.

2. Theory

2.1. Homogeneous plate

We consider the thermo-mechanical response of
an unconstrained, in®nite, orthotropic plate of
thickness e subjected to a thermal shock at time
t� 0, consisting of a constant heat ¯ux H on one
of the plate sides with convection on both its sides
Fig. 1. The plate is characterized by a through-
thickness (in the x-direction) thermal di�usivity d,
a through-thickness thermal conductivity j, in-
plane Young's moduli Ey and Ez, a Poisson's ratio
myz, and in-plane coe�cients of thermal expansion

ay and az. Convection is assumed to take place
with an environment at constant temperature T0,
with coe�cients of convection h1 and h2 on the
heated and unheated side, respectively. All the
material properties are assumed temperature-
independent.

Assuming that at all times, the plate is at me-
chanical equilibrium and that the deformation of
the plate is small, the thermal problem can be
solved independently of the mechanical response,
which can then be determined.

2.1.1. Thermal problem
We seek to determine the temperature T(x,t) as

a function of time t and of the position x within
the plate thickness, neglecting edge e�ects. The
function T(x,t) satis®es the Laplace equation with
the boundary conditions given above:

o2T
ox2
� 1

d
oT
ot

for ÿ e
2
< x <

e
2
; �1a�

T � T0 for ÿ e
2
< x <

e
2

and t � 0; �1b�

Fig. 1. Isotropic plate subjected to a thermal ¯ux H.
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ÿj
oT
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� h1�T ÿ T0� � H for x � ÿ e

2
and t > 0;

�1c�

ÿj
oT
ox
ÿ h2�T ÿ T0� � 0 for x � e

2
and t > 0:

�1d�
After modifying system (1a)±(1d) as shown in
Appendix A, it can be solved as in Ozisik (1993) by
separation of variables, leading to

T � a� b x
�
� e
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�
�
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m

cm bm cos bm x
���
� e

2

��
� h1

j
sin bm x

��
� e

2

���
exp �ÿdb2

mt�; �2�

where the coe�cients a, b, cm and bm are given in
Appendix A.

The average temperature T is de®ned as

T � 1

e

Ze=2

ÿe=2

T �x�dx: �3�

If the plate thickness e is small, the temperature
T can be assumed to be uniform. The average
temperature can be found by writing an energy
balance:

j
d

e
d �T
dt
� H ÿ �h1 � h2�� �T ÿ T0� �4�

the solution of which is

�T �t� � T0 � H
h1 � h2

1
ÿ ÿ eÿd�h1�h2�t=je

�
: �5�

From Eq. (5), �T is found to increase at t� 0 with
the following rate:

_�T 0 � d �T
dt

�����
t�0

� dH
ej

�6�

and to tend to a limiting value for large times given
by

�T1 � �T t!1j � T0 � H
h1 � h2

: �7�

The thermal gradient can be determined as the
®rst derivative of Eq. (2). The average thermal
gradient is directly expressed as

oT
ox
� 1

e

Zx�e=2

x�ÿe=2

oT
ox

dx � 1

e
T

x�e=2

x�ÿe=2

��� : �8�

It tends to the following limiting value:

oT
ox

����
t!1
� 1

e
T t!1j

x�e=2

x�ÿe=2

��� � 1

e
��a� be� ÿ �a�� � b

� ÿ H
h2

j�h1 � h2� � h1h2e
: �9a�

Again, assuming that the plate thickness e is small,
the average thermal gradient can be approximated
by

oT
ox

����
t!1
� ÿH

j
h2

h1 � h2

: �9b�

In conclusion, the evolution of the temperature
®eld can be described by the average temperature,
given by Eq. (5), and the average thermal gradient,
which tends to the value given in Eq. (9b).

2.1.2. Mechanical problem
We seek to determine the deformation and the

stresses induced in the plate by a temperature
pro®le T(x,t) assuming that (i) the plate is ¯at at
temperature T0, (ii) the plate is unconstrained, (iii)
plane stress conditions can be used because the
thickness of the plate is small, (iv) the elastic
problem can be solved with the theory of small
deformations. Similar problems are addressed in
Timoshenko and Woinowsky-Krieger (1959),
where the deformation of the plate is described by
the following main strains ey and ez, in the y and z
directions, respectively:

ey � ey0 � qyx; �10a�

ez � ez0 � qzx; �10b�
where ey0 and ez0 are the average main strains and
qy and qz are the main curvatures. Since all the
results are symmetrical with respect to the axis y
and z, they are written in a compact manner with
both indices separated by a comma. Eqs. (10a) and
(10b) are then expressed as

ey;z � ey0;z0 � qy;zx: �10c�
The average strains and curvatures are deter-

mined by writing the elastic relations:
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ey;z � ry;z

Ey;z
ÿ mzy;yz

rz;y

Ez;y
� ay;z�T ÿ T0�; �11�

where ry and rz are the main stresses and the or-
thotropic relation holds:

myzEz � mzyEy : �12�
Eq. (11) can be inverted:

ry;z � Ey;z

1ÿ myzmzy
�ey;z

� ÿ ay;z�T ÿ T0��

� mzy;yz�ez;y ÿ az;y�T ÿ T0��
�
: �13�

Average strains can be found by introducing
Eq. (13) into the force equilibrium equation (as the
plate is unconstrained):Ze=2

ÿe=2

ry;z�x�dx � 0 �14�

to yield a linear system of two equations with two
unknowns uy;z:

uy;z �
Ze=2

ÿe=2

�ey;z ÿ ay;z�T ÿ T0��dx: �15�

The determinant of Eq. (14) is zero only if

myz � 1

mzy
�16�

which is not physically possible, because the
Poisson's ratio cannot exceed 1. So the two un-
knowns uy;z must be zero and Eq. (14) lead to

ey0;z0 � ay;z
1

e

Ze=2

ÿe=2

T �x�dx

0B@ ÿ T0

1CA: �17�

So, the average strains depend on the increase
of average temperature. Their time dependence is
given by introducing Eq. (5) into Eq. (17). They
are not coupled by mechanical properties, as op-
posed to the case of the average strains of a bilayer
submitted to a change of temperature (see Finot
and Suresh, 1996).

The main curvatures can be found by intro-
ducing Eq. (13) into the momentum equilibrium
equation:

Ze=2

ÿe=2

xry;z�x�dx � 0: �18�

As before, this is a linear system where the two
unknowns must be zero, yielding expressions for
the curvatures similar to those for the average
strains Eq. (17):

qy;z � ay;z
12

e3

Ze=2

ÿe=2

xT �x�dx: �19�

As expected, Eq. (19) predicts no curvature for
a spatially uniform temperature. These equations
can be rewritten using the expression for the tem-
perature pro®le given by Eq. (2):

qy;z � ay;z b

(
� 12

e3

X
m

cm
2jÿ h1e

2jbm
cos�bme�

"

� jb2
me� 2h1

2jb2
m

sin�bme� ÿ jbm � h1e

jb2
m

#

� exp � ÿ db2
mt�
)

�20�

which yields the curvatures as a function of time.
Here again, we ®nd that the two main curvatures
are not coupled by mechanical properties, as op-
posed to the case of the average strains of a bilayer
submitted to a change of temperature (see Finot
and Suresh, 1996).

An expression can be independently found for
the time-derivative of the curvatures by di�eren-
tiating Eq. (19), using Eq. (1a) and performing a
partial integration:

dqy;z

dt
� d

12

e3
ay;z x

oT
ox

�
ÿ T

�e=2

ÿe=2

: �21�

Using Eqs. (1b)±(1d), the initial curvature rates
are

_qy0;z0 �
dqy;z

dt t�0j
� ÿd

6

e2
ay;z

H
j
: �22�

Furthermore, the curvatures tend to limits ay;zb
at long times, as show by Eq. (20). Using
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Eq. (9b), the following approximation for limiting
curvatures is found for the case of a small thick-
ness e:

qy1;z1 � ay;z
oT
ox

����
t!1
� ÿ ay;z

j
H

h2

h1 � h2

: �23�

In summary, the deformation of a plate during
a thermal shock can be described by average main
strains, which are related to the increase of average
temperature, and main curvatures, which are re-
lated to the temperature pro®le.

2.2. Composite plate

The simplest approach for adapting to an or-
thotropic composite plate the results derived above
for an orthotropic monolithic plate is to introduce
in the above equations the equivalent thermo-
mechanical properties of the composite material.
However, an additional e�ect appears if the com-
posite exhibits an asymmetry in the volume frac-
tion with respect to the y±z plane bisecting the
plate. We analyze this e�ect in the case of a uni-
form temperature, and then in the case of a ther-
mal shock.

2.2.1. Uniform temperature
If the composite exhibits an asymmetry in the

®ber volume fraction with respect to the y±z plane
bisecting the plate, the plate bends like a bilayer
material when submitted to a uniform increase of
temperature, unlike a monolithic or a balanced
composite plates. For a bilayered plate consisting
of two isotropic layers referred to as materials I
and II, with thicknesses eI and eII and thermo-
elastic properties as before, the isotropic curvature
due to a uniform increase of temperature from T0

to T can be expressed as in Finot and Suresh
(1996):

q �ÿ 6

�eI � eII�
�e�1� �e�2

�E�e4 � 4�e3 � 6�e2 � 4�e� 1= �E

� �aI ÿ aII��T ; �24a�
where

�e � eI

eII
; �24b�

�E � EI

1ÿ mI

1ÿ mII

EII
: �24c�

For unidirectional ®ber composites produced
by hot-pressing of composite plies of ®bers and
foils, the volume fraction of ®bers can vary slightly
within the thickness of the plate. Also, the thick-
ness of the matrix layer closest to the plate surface
can vary on either face of the plate, because of
post-fabrication polishing, machining or pickling.
The composite plate is then asymmetric and bends
even for a uniform temperature, as opposed to a
homogeneous plate. Because the composite plate is
orthotropic and not isotropic, its shape is de®ned
by two di�erent main curvatures, unlike an iso-
tropic bilayer. We thus introduce two temperature
curvature factors qT

y and qT
z which give the main

curvatures of the plate (assumed to be ¯at at
temperature T0) when it is at temperature T :

qy;z � qT
y;z� �T ÿ T0�: �25�

These factors which depend on the ®ber distri-
bution homogeneity, are di�cult to predict di-
rectly from observation of the plate, but can be
measured by imposing a uniform increase of
temperature to the plate. As suggested by
Eqs. (24a)±(24c) their importance increases as the
plate becomes thinner, and as the thermal expan-
sion mismatch between the ®bers and the matrix
increases.

2.2.2. Thermal shock
In the case of a thermal shock of a thin plate

with small ®ber volume fraction asymmetry is
small, we assume that the only signi®cant e�ect of
this asymmetry is to add a contribution to the
curvature of the composite plate, which can be
related to the average temperature through
Eq. (25). This is because the increase of average
temperature is large compared to the di�erence of
temperature of the two sides of the plate. There-
fore, the main curvatures of the plate during the
thermal shock can be written as

qy;z � qH
y;zHr�t� � qT

y;z� �T �t� ÿ T0�: �26�
In this expression, the ®rst contribution is due

to the non-uniformity of temperature within the
thickness of the plate, like for a homogeneous
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plate in Eq. (20). We have introduced ¯ux curva-
ture factors

qH
y;z �

ay;z

j
�27�

and a dimensionless function r(t) which can be
deduced from Eq. (20):

r�t� � jh2

j�h1 � h2� � h1h2e

� 1� 12

e3b

X
m

cm
2jÿ h1e

2jbm
cos�bme�

"(

� jb2
me� 2h1

2jb2
m

sin�bme� ÿ jbm � h1e

jb2
m

#

�exp �ÿdb2
mt�
)
: �28�

Flux curvature factors involve equivalent
properties of the composite for thermal expansion
and through thickness thermal conductivity.
Those equivalent properties can be measured sep-
arately. The second contribution to the curvature
is due to the geometric asymmetry of the plate, and
is related to the average increase of temperature of
the plate, given by Eq. (5). This contribution de-
pends on temperature curvature factors qT

y and qT
z

of the plate, which can also be measured. They
constitute a property of the plate. With Eq. (26),
and assuming as before that thickness e is small,
the limiting curvatures can be expressed as

qy1;z1 � qH
y;zH

h2

h1 � h2

� qT
y;z��T1 ÿ T0�: �29�

3. Experimental procedures

3.1. Thermal shock apparatus

An apparatus was constructed to measure the
evolution with time of the curvature of a plate
submitted to a thermal shock, de®ned as a sharp
step of heat ¯ux at time t� 0 (Eqs. (1a)±(1d)). The
heat ¯ux is provided by a radiative furnace con-
sisting of a quartz lamp with maximum power of

1.2 kW positioned at the focal line of a semi-el-
liptic, water-cooled re¯ector; the sample is posi-
tioned near the other focal line where the re¯ected
light is focused over the whole width of the sample.
The other unheated side of the plate can be cooled
by blowing air uniformly on its surface at a con-
trolled speed. The set-up thus allows to control
both heat ¯ux on the heated side and convection
on the unheated side of the plate.

The last few millimeters of the end of the plate
are clamped between two insulating quartz plates.
A laser beam is re¯ected from the polished, un-
heated side of the plate to an observation screen.
As the heat ¯ux is established, the curvature-in-
duced de¯ection of the re¯ected laser spot is video-
taped while the temperature is recorded with thin
thermocouples embedded at the center of the plate
width. After the experiment, the video-tape is ex-
amined frame by frame and the de¯ection of the
laser spot is determined from a graduated scale as
a function of time.

Fig. 2 shows a schematic of the apparatus. The
laser beam is re¯ected on a mirror M, positioned
so that the line PM of length h is perpendicular to
the plate of length d. The laser beam is then re-
¯ected from point M0 on the polished plate to
point N0 on the screen, positioned at a distance S
from, and parallel to, the plate. Assuming a con-
stant radius of curvature R for the plate (distance
OP or OM0), we can write

d � h tana;
d � R sinb;

�30�

Fig. 2. Schematic of experimental apparatus.
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when the radius of curvature R is large enough.
The length NN0 on the scaled screen is

NN0 � R sinb� tan�aÿ 2b� � �S ÿ R�1ÿ cosb��
�31�

which can be approximated as

NN0 � d 1

�
� S

h

�
ÿ 2

d
R

S 1

��
� d2

h2

�
� d2

h

�
�32�

if d is small compared to R. De®ning the curvature
q as the inverse of the radius of curvature R and
the de¯ection D as the di�erence between the dis-
tance NN0 (for the heated, curved plate) and the
distance NN00 (for the unheated, ¯at plate),
Eq. (32) leads to

q � D
2dS

�33�
for h much larger than d (i.e. neglecting the terms
d2=Sh and d2=h2).

3.2. Samples

The samples were rectangular plates 70 mm
long and 10 mm wide. For unreinforced samples, a
rolled Ti±6Al±4V sheet (from Titanium and Alloys
Corporation) of 1.6 mm thickness was used. Two
types of composite samples were examined. First,
samples B1±B5 (with 1.0 mm thickness) were
processed by British Petroleum by liquid in®ltra-
tion. They exhibited 35 vol% of Sigma SiC ®bers
(diameter 100 lm, from British Petroleum) and
contained six plies. Second, samples M1±M10
were processed by Matra D�efense (France) by
plasma spraying and subsequent hot-pressing of
single plies, containing SCS-6 SiC ®bers (diameter
140 lm, from Textron). Samples M1±M5 (with 1.6
mm thickness) exhibited a volume fraction 30%
and six plies, samples M6±M9 (with 1.2 mm
thickness) a volume fraction 30% and ®ve plies.
Sample M10 (with 0.9 mm thickness) contained 35
vol% of Sigma SiC ®bers and six plies.

The unheated side of the sample was polished
with 1 lm diamond paste to maximize the re¯ec-
tion of the laser beam. The heated side of the
sample was lightly ground and painted with a high
emissivity, black paint (Tempil 2000 from Air Li-

quide, baked near 250°C for about 2 h) to ensure
that samples absorbed the heat ¯ux from the fur-
nace in a controlled, reproducible manner. To in-
sulate the heated side of the plate from its
unheated side, a light-weight frame of re¯ective
aluminum foil was a�xed around the plate with
high-temperature glue, except for the clamped
edge.

To determine the time-dependence of the aver-
age temperature, K-type thermocouples were in-
troduced from the unheated side into one or
several holes (1 mm in diameter and in depth)
drilled in the thickness of the plate.

4. Results

4.1. Calibration

The heat ¯ux H could be varied from 20 to 450
kW m-2 by varying the voltage applied to the lamp
and the distance between sample and lamp. The
step-shaped ¯ux increase was achieved by ®rst es-
tablishing a constant ¯ux from the lamp and then
rapidly removing a shutter shielding the sample.
The absorbed heat was calibrated by recording the
rise of temperature of a copper plate (with the
same geometry as the investigated titanium sam-
ples and painted in a similar manner) insulated on
all faces not exposed to the ¯ux. Copper was
chosen because of its high conductivity, leading to
a uniform temperature within the sample. Within
the ®rst ®fty degrees centigrade, the temperature
rise was linear with time, and the heat ¯ux H could
be calculated from the slope T 0 of the curve, the
thickness of the plate e, and the volumetric heat
capacity of copper L (L� 3.46 ´ 106 J Kÿ1 mÿ3):

H � T 0 � L � e: �34�
Cooling was controlled through the velocity F

of air blown on the sample, which was measured
by a ¯owmeter giving the air ¯ow D at room
temperature and atmospheric pressure. Air was
blown uniformly on the unheated surface of the
sample with a tube drilled with holes at regular
intervals of about 10 mm. The e�ective surface R
subjected to the air ¯ow was determined as 1000
mm2 and the air velocity F was calculated as
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F � D
R

�35�
and could be varied from 0 to 2.00 msÿ1.

A control experiment for curvature measure-
ments was performed on a bimetallic 10 ´ 70 mm2

plate consisting of aluminum (constituent I) and
stainless steel (constituent II) with a total thickness
of 3 mm. This bimetallic strip was tested at low
heat ¯uxes with negligible temperature gradients,
so that the observed curvatures were due only to
the average temperature. The de¯ection D of the
laser beam was a linear function of the distance d
from the clamp, thus con®rming that the curvature
was constant within the plate. Furthermore, the
curvature induced by a change of temperature
measured with a thermocouple, as calculated with
Eq. (24a) matched well the experimentally mea-
sured curvature, as shown in Table 1 which also
lists the materials properties used.

4.2. Thermal measurements

The temperature was measured with a single
thermocouple embedded in the sample about 50
mm from the clamp. Without active cooling
(F� 0), the temperature measurement was very
reproducible. When active air cooling was used,
careful placement of the thermocouple was neces-
sary to avoid convective cooling of the thermo-
couple tip (the sides of the hole were ®lled with
ceramic insulation). Temperature homogeneity
was veri®ed by measuring the limit temperature
reached within a plate of Ti±6Al±4V under two
di�erent sets of conditions, as shown in Fig. 3 for a
typical measurement. This ®gure shows that at
distances more than 10 mm from the clamp, the
temperature is nearly constant. On the other hand,
a temperature drop was observed close to the
clamp, indicating that signi®cant heat losses oc-
curred by conduction to the small unheated part of

the plate in the clamp, to the quartz plates and to
the clamp itself. It is expected that the thermal
gradient and the associated sample curvature were
also a�ected by this edge e�ect.

To determine the coe�cients of convection on
the heated and the non-heated faces, respectively,
h1 and h2, a few experiments were carried out with
a small heat ¯ux (H� 25 kW mÿ2) and various
cooling velocities. With no active cooling (F� 0),
for which convection was assumed to be the same
on both sides of the sample, the experimental
limiting temperature measured at about 50 mm
from the clamp gives the coe�cient of convection
h1 by using Eq. (7). Using the same ¯ux, experi-
ments were performed with active cooling. As-
suming that convection on the heated side took
place according to the case of no active cooling,
the measured temperature yielded the coe�cient of
convection h2 as a function of the cooling velocity
F, using Eq. (7). The results for h2 are presented in
Fig. 4 h1 corresponding to h2 for no cooling. For a
range of heat ¯uxes H from 25 to 300 kW mÿ2, the

Table 1

Properties of the layers of the bimetallic strip at 280°C used to compare the experimental (Exp) curvature q for a ¯ux H� 25 kW mÿ2

and no active air cooling, and the theoretical curvature

E (GPa) a (10ÿ6 Kÿ1) e (mm) q (Exp) (mÿ1) q (Eq. (24a)) (mÿ1)

Stainless steel 200 16 1 1.24 1.125

Aluminum 55 25 2

Fig. 3. Limiting temperature T as a function of the distance

from the clamp d, for case 1 (H� 25 kW mÿ2, F� 0) and case 2

(H� 200 kW mÿ2, F� 2.00 m sÿ1).
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¯ux did not a�ect signi®cantly the coe�cient of
convection, which was found to vary by less than
30 W mÿ2 Kÿ1 (10%) within the temperature range
30±500°C. Moreover, it was found that the coef-
®cients of convection were also nearly indistin-
guishable between monolithic plates, composite
plates and bimetallic strip. This is expected since
these coe�cients are a surface property, and since
all the metallic samples had surfaces with the same
¯at and polished ®nish aspect, with or without
paint.

4.3. Monolithic Ti±6Al±4V plates

The curvature and average temperature induced
by a step-shaped heat ¯ux were measured for
various heat ¯uxes H and cooling velocities F. The
limiting curvature, which was reached within a few
seconds (typically less than 10 s) was investigated
®rst. The de¯ection of the laser beam at di�erent
points along the sample (di�erent PM0 values,
Fig. 2) was determined for a screen-specimen dis-
tance S� 1.45 m, as shown in Fig. 5. The de¯ec-
tion was not linear close to the clamp, indicating a
reduced curvature. Extrapolation of the linear
portion of the curve in Fig. 5 gives a y-axis inter-
cept y0� 8 mm. All other measurements were then
performed at a large distance from the clamp
(d� 47 mm), replacing d in Eq. (33) with d ÿ y0,
which yields

q � D
2�d ÿ y0�S : �36�

Table 3 lists the limiting curvatures measured un-
der various conditions.

Fig. 6 shows curvature and average tempera-
ture of a plate subjected to a step-shaped ¯ux of
12 s. duration. A very sharp increase of curvature
is observed at the beginning of the experiment and
the ®nal curvature is reached quickly, in contrast
to the temperature which increases in a much
smoother manner and does not reach its limiting

Fig. 4. Coe�cient of convection h2 as a function of the cooling

velocity F.
Fig. 5. Limiting de¯ection of the laser beam D as a function of

the distance from the clamp d for a cooling velocity F� 2.00 m

sÿ1.

Fig. 6. Time-dependence of ¯ux H, average temperature T and

curvature q for a Ti±6Al±4V plate subjected to a thermal shock

of 12 s duration, with a cooling velocity F� 2.00 m sÿ1 and a

heat ¯ux H� 200 kW mÿ2.
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value ( �T1 � 330°C for these conditions) before the
¯ux is interrupted. The curvature is then recovered
very quickly, con®rming that the deformation is
purely elastic. Again, the temperature decreases
much more gradually and slowly than curvature.

4.4. Composite Ti±6Al±4V/SiC plates

Table 4 lists the thermo-mechanical properties
of Ti±6Al±4V/SiC measured with samples similar
to sample M8. The thermal conductivity and dif-
fusivity were measured using the laser ¯ash meth-
od by Holometrix (USA). The thermal expansion
was measured by Ecole des Mines de Paris
(France) with a dilatometer Setaram TMA 92.

Experiments on Ti±6Al±4V/SiC plates were
conducted with various heat ¯uxes H and cooling
velocities F. All curvatures were measured along
the ®ber direction z (longitudinal curvatures), ex-
cept for sample B5, for which the long edge of the
rectangle was perpendicular to the ®bers, and
which thus yielded curvatures along the direction y
perpendicular to the ®bers (transverse curvatures).

First, the composite limiting curvature was in-
vestigated and was found to di�er signi®cantly
from that of unreinforced Ti±6Al±4V plates: the
results showed larger scattering and the limiting
curvature was reached after a longer time. Also,
the limiting curvature was generally much larger
than expected, whereas it was expected to be sim-
ilar to the limiting curvature of unreinforced
plates, because the equivalent coe�cients of ther-
mal conductivity and expansion of Table 4 are
quite similar to the properties of the unreinforced
alloy.

This discrepancy indicates that an additional
mechanism is active in the composite plates,
identi®ed in the analysis above as the bilayer e�ect.
Thus, as shown by Eq. (29), the limiting curvature
is the sum of two contributions, i.e., the curvature
due to the average temperature for a bilayer plate
and the curvature due to the thermal ¯ux. The
former curvature is given by the curvature factor
qT

y;z (depending whether direction y or z are con-
sidered), which represents the increase of curvature
per unit temperature. The latter curvature is given
by the curvature factor qH

y;z, corresponding to the
increase of curvature per unit ¯ux.

To distinguish between the two types of cur-
vatures, two main combinations of parameters H
and F were examined (with d� 47 mm, as for the
Ti±6Al±4V plates). The curvature factors were
then measured as follows:

(i) The curvature factor qT
y;z was determined

from the curvature q1 of the plate for a small ¯ux
H� 25 kW mÿ2 and a cooling velocity F� 0. The
curvature was deduced from the de¯ection D1

using Eq. (33) (de¯ection was found to be linear
with distance d, as in the case of a bimetallic strip).
The limiting temperature was then about 280°C,
and the convection factors h1 and h2 were 50 W
mÿ2 Kÿ1. The measured curvature was then di-
vided by the temperature increase of 250 K, the
initial temperature being 30°C, to ®nd the tem-
perature curvature factor qT . For those condi-
tions, the small curvature q1 found for a
monolithic Ti±6Al±4V plate is negligible, and is
entirely due to the small imposed ¯ux, so that
qT � 0.

(ii) The curvature factor qH
y;z was calculated

from the measurement of the de¯ection D2 of the
plate for a large ¯ux H� 200 kW mÿ2 and a
cooling velocity F� 2.00 m sÿ1. The limiting
temperature was then about 330°C. The con-
vection factors were 50 W mÿ2 Kÿ1 on the
heated side and 620 W mÿ2 Kÿ1 on the cooled
side. The de¯ection due to this average temper-
ature, calculated with the experimental tempera-
ture curvature factor previously determined, is
subtracted from D2 to yield D02. The curvature q2

due solely to the thermal ¯ux is then found by
introducing this de¯ection D02 into Eq. (36), be-
cause this curvature is expected to be sensitive to
heat losses by the clamp in the same way as for
the Ti±6Al±4V plate in Fig. 5. This curvature is
then divided by the heat ¯ux H� 200 kW mÿ2,
to ®nd ¯ux curvature factor qH . For those con-
ditions, the curvature due to the thermal ¯ux in
a monolithic Ti±6Al±4V plate is q2� 0.18 mÿ1,
as shown in Table 3, and the curvature factor is
qH � 9 ´ 10ÿ7 m Wÿ3.

Table 5 lists the results of curvatures q1 and q2

together with the curvature factors for each plate.
The results for qT exhibit a high variability,
whereas qH is more constant. Flux curvature fac-
tors are slightly inferior for composites B1±B4,
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and the curvature obtained for B5 is more pro-
nounced than for samples B1±B4.

Fig. 7 shows the evolution of the average tem-
perature and the plate curvature along the ®ber
direction as a function of time for a composite
plate. For simplicity, the curvature was deduced
from the de¯ection by using Eq. (36) as for the Ti±
6Al±4V samples. The evolution di�ers noticeably
from the case of the monolithic plates Fig. 6. In
particular, the limiting curvature is reached after a
much longer time. As for the Ti±6Al±4V plate in
Fig. 6, the curvature is fully and rapidly recovered
after the ¯ux is interrupted, indicating again that
all deformations are purely elastic.

5. Discussion

5.1. Monolithic Ti±6Al±4V plates

Table 2 lists the properties of Ti±6Al±4V
needed for the calculations and Fig. 4 shows the

coe�cients of convection h1 and h2 (h1 equals h2

for no cooling).
Table 3 compares experimental and calculated

data, using material properties of Table 2. The
limiting temperatures for ¯uxes H� 25 and 200
kW mÿ2 were used to determine convection fac-
tors. For H� 300 kW mÿ2, we can compare the
limiting temperature as calculated with Eq. (7) and
as measured, and we ®nd a good agreement, which
con®rms the accuracy of convection factors. The
limiting curvatures are calculated with Eq. (23),
using material properties at the corresponding
temperature. A good agreement is found between
experiment and prediction.

Fig. 8 compares the calculated and measured
time dependence of temperature and curvature for
the interval where H is non-zero. Temperature is
calculated from Eq. (5) and curvature from
Eq. (20), where ®ve terms were su�cient in the
sum for good convergence. Since neither equation
takes into account the temperature-dependence of

Fig. 7. Time-dependence of curvature q for a Ti±6Al±4V/SiC

plate (sample M8) subjected to a thermal shock of 26 s dura-

tion, with a cooling velocity F� 2.00 m sÿ1 and a heat ¯ux

H� 200 kW mÿ2.

Table 2

Ti±6Al±4V thermal expansion a, conductivity j and di�usivity

d at various temperatures (Boyer et al., 1994)

T (°C) a (10ÿ6 Kÿ1) j (W mÿ1 Kÿ1) d (10ÿ6 m2 sÿ1)

30 8.5 6.5 2.5

250 9 8.5 3.2

330 9 10 3.5

460 9.5 12 4

Table 3

Experimental (Exp) and calculated values for limiting temper-

ature and curvature ( �T1, q1) for three combinations of heat

¯ux H and cooling velocity F, measured for a Ti±6Al±4V plate

H (kW mÿ2) F (m sÿ1) �T1(°C) q1 (mÿ1)

Exp Eq. (7) Exp Eq. (23)

25 0 280 280 ÿ ÿ
200 2.00 330 330 0.18 0.17

300 2.00 460 480 0.23 0.22

Fig. 8. Comparison between calculated and measured time-de-

pendence of the curvature q and average temperature T for a

Ti±6Al±4V plate subjected to a cooling velocity F� 2.00 m sÿ1

and a heat ¯ux H� 200 kW mÿ2.
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material properties, properties of Ti±6Al±4V at
250°C given in Table 3 were used. For tempera-
ture, the match between measured and calculated
data is quite good in Fig. 8. Reasons for discrep-
ancy include di�culties of measuring a rapidly
varying temperature and inaccuracies in thermal
properties of the plate and coe�cients of convec-
tion. The match between measured and calculated
curvatures is reasonable overall, although the
discrepancy in the ®rst few seconds of the experi-
ment is large. This discrepancy stems from various
factors. First, the thermal conductivity of Ti±6Al±
4V at room temperature (j� 6.5 W mÿ1 Kÿ1) is
less than the thermal conductivity at about 250°C
(j� 8.5 W mÿ1 Kÿ1) used in the calculations, thus
underestimating the curvature. Second, Eq. (36)
was used for the measured curvature deduced from
the laser de¯ection, whereas heat losses might be
less signi®cant during the ®rst seconds, where
Eq. (33) could apply better, so that the measured
curvature was overestimated at the beginning of
the step.

Finally, after the heat ¯ux has been stopped in
Fig. 6, the temperature decreased gradually as a
result of convection. The time-dependence of cur-
vature and temperature during this phase could be
analyzed in a manner very similar to that described
above for the case where the heat ¯ux is being
applied. While this is beyond the scope of this
article, we note that the curvature decreased very
quickly, which can be explained by a rapid ho-
mogenization of temperature through the thick-
ness of the plate, whereas the temperature
decreased gradually as an e�ect of convection.

In conclusion, theory matches the experiments
satisfactorily. It shows that Timoshenko's theory
is appropriate to the kind of plate we used. The
dependence of material properties is taken into
account for the limiting curvatures, for which the
match is quite good.

5.2. Composites Ti±6Al±4V/SiC plates

Table 4 lists the properties of Ti±6Al±4V/SiC
needed for the calculations. These properties are
consistent with equivalent properties as calculated
with Hashin's self-consistent model (Christensen,
1979), introducing thermo-mechanical properties

of the ®bers and of the matrix. Coe�cients of
convection h1 and h2 are given in Fig. 4 (h1 cor-
responds to h2 for no cooling).

In Table 5, ¯ux curvature factors are listed for
all the composite plates. Using properties of Ta-
ble 4 in Eq. (27), it is predicted to be 8 ´ 10ÿ7 m
Wÿ3. The discrepancy between the measured and
calculated ¯ux curvature factors can be explained
by measurement errors as well as by inaccuracies
in the composite equivalent properties. In partic-
ular, coe�cients of thermal conductivity and ex-
pansion are di�cult to determine accurately, so
that thermal conductivity may have been overes-
timated, whereas thermal expansion may have

Table 4

Ti±6Al±4V/SiC longitudinal and transverse thermal expansion

az and ay, through-thickness thermal conductivity j and dif-

fusivity d at various temperatures, measured with the same

composite as sample M8

T (°C) az

(10ÿ6 Kÿ1)

ay

(10ÿ6 Kÿ1)

j
(W mÿ1 Kÿ1)

d
(10ÿ6 m2 sÿ1)

30 7 9 6.5 3.2

250 7 9 8.5 3.4

330 7 9 9 3.5

Table 5

Limiting curvatures of Ti±6Al±4V/SiC plates in the ®ber di-

rectiona, for a uniform temperature of 280°C (total curvature

q1) and for a heat ¯ux H� 200 kW mÿ2 and a cooling velocity

F� 2.00 m sÿ1 (component of curvature due solely to the

thermal ¯ux, q2), temperature curvature factor qT and ¯ux

curvature factor qH

q1 (mÿ1) q2 (mÿ1) qT

(10ÿ4 mÿ1 Kÿ1)

qH

(10ÿ7 W mÿ3)

M1 0.18 0.18 6.0 9

M2 ÿ0.05 0.18 ÿ1.6 9

M3 0.03 0.18 1.0 9

M4 0.16 0.19 5.3 9.5

M5 0.08 0.18 2.7 9

M6 0.16 0.17 5.3 8.5

M7 0.04 0.17 1.3 8.5

M8 0.25 0.20 8.3 10

M9 0.19 0.20 6.3 10

M10 0.49 0.17 16.3 8.5

B1 0.12 0.17 4.0 8.5

B2 0.17 0.14 5.7 7

B3 0.12 0.15 4.0 7.5

B4 0.08 0.14 2.7 7

B5 0.05 0.20 1.7 10

a In the direction perpendicular to the ®bers for sample B5.
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been underestimated. That could explain why the
¯ux curvature factor of sample M8 was measured
to be 10ÿ6 m Wÿ1. Besides, materials properties
may vary from sample to sample, especially be-
tween M (Matra) and B (BP) samples. In spite of
that discrepancy, the match is good enough to be
considered as an experimental demonstration that
equivalent properties can be used to determine ¯ux
curvature factors. In that regard, the measured
values for qH are rather homogeneous, indicating
that they depend on material properties, as op-
posed to values for qT which vary signi®cantly
between samples, because qT is a characteristic of
the plate itself rather than a material property.
Also, the fact that qH

y for sample B5 (corre-
sponding to a transverse curvature) is larger than
qH

z measured for other B samples (corresponding
to a longitudinal curvature) is expected since the
transverse thermal expansion is larger than the
longitudinal thermal expansion, as shown in Ta-
ble 4. So, we believe that the mismatch between
calculated and measured data can be entirely ex-
plained by the determination of composite prop-
erties and measurements inaccuracies.

In Table 6, the limiting curvature has been
measured after the de¯ection of the laser by using
Eq. (36). The calculated limiting curvature has
been evaluated with Eq. (29) by using measured
equivalent properties, to determine the ¯ux cur-
vature factor, and by using the measured temper-
ature factor qT of plate M8 (given in Table 2).
Because an accurate prediction of this factor
would require a very thorough and extensive ob-
servation of the composite plate, we consider it as
a measured property associated to the plate, just
like other thermal properties. The mismatch be-
tween the calculated and measured limiting cur-
vature is essentially due to the mismatch for the

¯ux curvature factor, which has been discussed
above.

To compare the time-dependence of curvature
of plate M8 in the ®ber direction, as measured in
Fig. 7 and as predicted by Eq. (26), we use prop-
erties of Table 4 and curvature factor qT

z given in
Table 2. As for the monolithic material, ®ve terms
in the sum of Eq. (28) are su�cient for a very good
convergence. Fig. 9 reveals a good match between
the measured and calculated time-dependence of
temperature and curvature, during the time where
the heat ¯ux is being applied. In particular, it
shows that the increase of curvature measured in
the last seconds of the thermal shock is propor-
tional to the increase of average temperature,
which validates the hypothesis that asymmetry of
the ®bers distribution provides a bilayer e�ect
proportional to the increase of average tempera-
ture Eq. (26). Conversely, the curvature rises very
sharply in the ®rst seconds, in the same way as for
the monolithic plate, because the function r(t)
given in Eq. (28) rises very sharply. We conclude
that Eq. (26) provides a good model for the time-
dependence of the curvature of a composite plate.
The reasons for the discrepancy are multiple: dif-
®culties of measuring a rapidly varying tempera-
ture, inaccuracies in the thermal properties of the
material and in the coe�cients of convection as a
function of temperature, as discussed earlier.

Table 6

Experimental (Exp) and calculated values for limiting temper-

ature and longitudinal curvature ( �T1 and qz1) for two com-

binations of heat ¯ux H and cooling velocity F, measured for a

Ti±6Al±4V/SiC plate (sample M8)

H (kW mÿ2) F (m sÿ1) �T1(°C) qz1 (mÿ1)

Exp Eq. (7) Exp Eq. (27)

25 0 280 280 ÿ ÿ
200 2.00 330 330 0.46 0.41

Fig. 9. Comparison between calculated and measured time-de-

pendence of the longitudinal curvature q and average temper-

ature T for a Ti±6Al±4V/SiC plate (sample M8) subjected to a

cooling velocity F� 2.00 m sÿ1 and a heat ¯ux H� 200 kW mÿ2.
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As in the case of Ti±6Al±4V plates, the cooling
section in Fig. 7 after interruption of the heat ¯ux
could also be analyzed in a similar manner, a task
which is again beyond the scope of this article.

In conclusion, we ®nd a good match between
theory and experiment for the response of a
composite plate. The results are more di�cult to
analyze than in the case of a monolithic plate,
because of the bilayer e�ect which acts as an ad-
ditional mechanism. However, they validate the
use of equivalent properties of the composite ma-
terial, together with the temperature curvature
factor which can be measured separately.

6. Conclusion

Closed-form solutions are derived for the time-
dependence of temperature and curvature of a
monolithic plate subjected to a step-shaped heat
¯ux and cooled by convection on both sides. The
plate response can be described by an average
temperature and an average thermal gradient
which tend to limiting values which have been
determined. The curvature of the plate also tends
to a limiting value which can be simply related to
the thermal ¯ux.

The model is then extended to the case of a
unidirectional composite plate with a non-uniform
®ber distribution. We ®nd that homogenized
properties can be used provided that the asymmetry
of the plate which leads to a bilayer e�ect is taken
into account. Therefore, the overall curvature of
such a plate is modeled as the sum of two contri-
butions: the ®rst curvature contribution is given by
the monolithic solution with equivalent properties
of the composite, while the second contribution is
the result of the average temperature and is similar
to the curvature of a bilayer material resulting from
a change of uniform temperature.

An experimental apparatus was built to mea-
sure as a function of time the curvature and the
average temperature of a plate subjected to a step-
shaped heat ¯ux. The experimental results were
found to be in reasonable agreement with the
theoretical analysis for both monolithic Ti±6Al±
4V plates and ®ber-reinforced Ti±6Al±4V/SiC
plates, thus validating the model.
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Appendix A

To solve the equation system (1a)±(1d) which
includes non-homogeneous boundary conditions,
we make a variable transformation to make it
homogeneous. The temperature T is written in the
form:

T � T � � a� b x
�
� e

2

�
: �A:1�

We can check that T� satis®es the Laplace equa-
tion Eq. (1a), and we determine the constants a
and b such that T� satis®es a homogeneous sys-
tem, i.e., Eqs. (1c) and (1d) are a homogeneous
system:

a � T0 � H
j� h2e

j�h1 � h2� � h1h2e
; �A:2�

b � ÿH
h2

j�h1 � h2� � h1h2e
: �A:3�

T� is then found in Ozisik (1993), together with the
de®nition of the following constants:

bm � tan �bme� j
2b2

m ÿ h1h2

j�h1 � h2� ; �A:4�

cm � 1

N�bm�
cos �bme� ah1 ÿ jb� bh1e

jbm

� �"

ÿ sin �bme� a

 
� be� bh1

jb2
m

!
ÿ ah1 � jb

jbm

#
;

�A:5�
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where

N�bm� �
1

2j2
�j2b2

m � h2
1� e� jh2

�j2b2
m � h2

2�

 !"

�jh1

#
: �A:6�
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