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Abstract

A model for creep threshold stresses in alloys strengthened by coherent, misfitting precipitates is developed for the case where the
precipitate is not sheared, and where there are elastic interactions between a dislocation and the precipitate over which it climbs. Cal-
culations of the particle stress field due to a positive stiffness and lattice parameter mismatch between precipitate and matrix predict that
the mismatch forces help the dislocation climb/glide process over the precipitates but that they trap it at the departure side of the particle.
This results in a true threshold stress, rather than a slowing of the kinetics of dislocation climb as in previous models, which is given by
the applied stress necessary to free the dislocation by a glide mechanism. Model predictions and experiment are compared for precipi-
tation-strengthened aluminum alloys containing nanosize Al3Sc, Al3(Sc, Li) and Al3(Sc, Yb) precipitates with various sizes and mis-
matches. In agreement with experimental creep results, the model predicts that the threshold stress increases nearly linearly with
precipitate radius, and also with the magnitude of the precipitate/matrix lattice mismatch.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A common strategy to improve the high-temperature
strength of metals and alloys is to introduce particles
[1,2], either coherent precipitates [3–6] or incoherent disper-
soids [7–9], which decrease dislocation mobility. In these
alloys, when deformation is controlled by matrix disloca-
tions, creep resistance is determined by the rate-limiting
process by which dislocations bypass the obstacles. Thresh-
old stresses, below which the creep strain rate is not mea-
sureable in a laboratory timeframe, exist for alloys
containing coherent precipitates or incoherent dispersoids.
When the precipitate is not sheared, these stresses are due
to interactions between the dislocations and the particles
during climb and bypass [1,2]. For precipitation-strength-
ened alloys with coherent precipitates, the threshold stress
has been attributed to lattice strains induced in the matrix
by the precipitates due to a size mismatch that affects the
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dislocation climb rate [10,11]; for dispersion-strengthened
alloys, electron microscopy observations suggest an attrac-
tive interaction between the dislocation and the unsheara-
ble, incoherent dispersoid at the detachment side
[8,10,12], which occurs after the dislocations have sur-
mounted the obstacles by climb. These mechanisms operate
only at elevated temperatures, since dislocation climb
requires appreciable rates of vacancy diffusion. The present
paper begins with a model developed by Rösler and Arzt
[13] for a dislocation climbing around a coherent precipi-
tate, and considers extensions to that model by Marquis
and Dunand [11] taking into account matrix misfit strains,
resulting in a new model for creep threshold stresses in
alloys strengthened by coherent, misfitting precipitates.

2. Literature review

2.1. Previous models for threshold stresses

Models for threshold stresses in particle-strengthened
alloys may be divided into two categories: “local climb”
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models, in which the dislocation follows closely the profile
of the particle, inducing a sharp bend where the climbing
portion of the dislocation rejoins the glide plane [14,15];
and “general climb” models [16,17], in which portions of
the dislocation away from the particle are allowed to relax
or “unravel” by diffusion and leave the glide plane,
smoothly connecting the portion which is forced to climb
over the particle for geometrical reasons to the portions
that remain in the glide plane. Threshold stresses predicted
for local climb are of the right order of magnitude for dis-
persion-strengthened alloys (40–70% of the Orowan stress);
however, the sharp dislocation bends implied by local
climb are unstable high-energy configurations, and there-
fore unlikely to occur [13,17]. The threshold stresses pre-
dicted during general climb, with a dislocation geometry
in agreement with transmission electron microscopy
(TEM) observations, are much too low however [7,16,18].
Other models of creep threshold stresses in dispersion-
strengthened alloys address this discrepancy by postulating
attractive interactions between a dislocation and the inco-
herent dispersoid–matrix interface. Those interactions are
due to either diffusional relaxation of dislocation stresses
at the interface [9,19,20], or to a reduction in the line energy
of dislocations when they become incorporated into the
interface [8,21,22].

To explore the discrepancy between experimentally mea-
sured threshold stresses and the predictions of general
climb models, a model was developed by Rösler and Arzt
for threshold stresses in metals with low volume fractions
(u < �10%) of non-interacting precipitates (i.e. without
departure-side pinning or precipitate shearing) [13]. In this
model, the kinetics of general climb of a dislocation over a
cubic particle are calculated numerically. Although the
model does not yield a closed-form solution for threshold
stresses due to general climb, threshold stress values can
be determined from computed strain rate vs. stress curves.
Using this model, only a small (several per cent) normal-
ized threshold stress, defined as threshold stress divided
by the Orowan stress, is predicted; this is well below values
observed experimentally in a series of Al–Sc- and Al–Zr-
based alloys [4,5,23–31] with a low volume fraction of
Fig. 1. Schematic of an edge dislocation with Burgers vector b subjected to
diameter and length 2R. A dashed line indicates the glide plane intersection
“unraveled” segment, BC, and a curved segment that remains in the glide pla
precipitate, but is displaced here for clarity.
nanoscale, coherent precipitates. In the remainder of the
present work, we adopt the naming convention introduced
in Ref. [13], i.e. the climbing portion and the unraveling
portion of the dislocation are called AB and BC, respec-
tively, while portion CD remains in the glide plane, as
shown in Fig. 1.

2.2. Previous model for threshold stresses due to elastic

precipitate/dislocation interactions

The above Rösler–Arzt (R–A) model [13] was extended
by Marquis and Dunand (M–D) [11] to consider the effects
of elastic interactions between coherent precipitates and
dislocations, originating from lattice parameter mismatch
and elastic modulus mismatch between the two phases.
This extended model comprises a climbing edge dislocation
and a cylindrical particle (Fig. 1). A cylinder was chosen to
represent the precipitate rather than a sphere or a cube (the
latter was used in the R–A model), since an analytical solu-
tion exists to describe the shear-modulus mismatch interac-
tion force between a dislocation and an infinitely long
cylinder [32,33]. The interaction stress due to a constrained
size mismatch e was originally given by Eshelby [34], and
the interaction force is obtained through application of
the Peach–Koehler equation [35]. In the extended M–D
model [11], the equilibrium shape of the climbing disloca-
tion is found by setting equal the chemical potential of a
vacancy, lv, at AB (climbing portion) and at BC (unravel-
ing portion), as was done in the original R–A model [13]
(Fig. 1). For the climbing portion AB, the chemical poten-
tial of a vacancy is given by:

lv ¼
lmb2

2
@l
@y

� �
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dAAB
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where lm is the shear modulus of the matrix; the Burgers
vector and line sense of the edge dislocation are
ð 0 �b 0 Þ and ð �1 0 0 Þ, respectively; ð@l=@yÞABC

is the
derivative of the dislocation length l with respect to the dis-
location glide distance y, for a constant climb area ABC be-
tween unraveling portion BC and the glide plane;
a shear stress in the y-direction, and bypassing by climb a precipitate of
. The dislocation comprises a straight climbing segment, AB, a curved
ne, CD, after Ref. [11]. The coordinate origin resides at the center of the



Fig. 2. Glide (top) and climb (bottom) forces, normalized by the Orowan
force (calculated from Eq. (2)) on a positive edge dislocation in an Al
matrix, due to a misfitting Al3Sc precipitate with radius R = 5 nm and
volume fraction u = 0.0032 at 300 �C.
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tanðbÞ ¼ dz=dy is the tangent of the dislocation climb tra-
jectory, where z is the climb direction; dAAB/dy is the
change in climb area AAB between the climbing portion
AB and the glide plane, per unit advance in the glide direc-
tion y; Fc and Fg are the net climb and glide forces acting
on the climbing portion AB (Fig. 1).

Using this approach and taking the Al/Al3Sc system as
an example, Marquis and Dunand [11] calculated creep
strain-rate vs. stress curves for Al3Sc precipitates of various
sizes. The calculated strain rates are in semiquantitative
agreement with experimental measurements. The experi-
mental creep curves were not exactly replicated, but their
important general features were captured by the extended
M–D model. In particular, normalized threshold stresses
were predicted to be greater than those for non-interacting
precipitates as in the R–A model [13], and to increase with
the precipitate radius, unlike the R–A model. The model
was additionally applied to ternary Al–Sc–Zr [23] and
Al–Mg–Sc [25] alloys. When the lattice parameter mis-
match was increased in the model from 0.8% to 1.1%
[23], or from 0.74% to 0.91% [25], larger normalized thresh-
old stresses resulted. Predictions from the M–D model that
the threshold stress increases with lattice parameter mis-
match, for a given precipitate size and volume fraction,
were borne out for all Al–Sc–X alloys creep-tested to date.
When compared to Al3Sc [4,5], Al3(Sc,X) show increased
mismatch for X = Gd, Yb, Y, Dy or Er [24,30], the same
mismatch for X = Zr, Ti and Mg [23,25–29], and decreased
mismatch for X = Li [31].

Fig. 2a and b shows contour plots of the dislocation
glide and climb forces, respectively, induced in the matrix
by a coherent Al3Sc precipitate having both lattice
parameter and shear modulus mismatch with the matrix;
the governing equations (Eqs. (3)–(6) in Ref. [11]) are
given in the M–D model article [11]. In this example,
which is representative of the general case, the cylindrical
precipitate radius R is 5 nm, and the volume fraction u
(necessary for calculating the interprecipitate distance,
and therefore the Orowan stress) is 0.0032 (0.32%), which
is typical of a dilute Al–0.08 at.% Sc alloy. Distances in
the plots have been normalized to R and the force con-
tours are normalized by the Orowan force, fOr, which is
equal to the Orowan shear stress increment multiplied
by the Burgers vector b, and the interprecipitate distance
k [35]. The Orowan shear stress increment, Drc

Or, is given
by [14,36]:

Drc
Or ¼

0:4lmb

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mm

p ln 2�0:82R
b

� �
k

ð2Þ

where k ¼ Rð1:538u�1=2 � 1:643Þ is the interprecipitate
spacing for a volume fraction u, and mm is the Poisson’s ra-
tio of the matrix. In the present example, the Orowan force
is 1.22 nN which, when divided by the Burgers vector and
the interprecipitate distance, k, corresponds to an Orowan
stress of 31.3 MPa. For example, in Fig. 2, -fOr/16 indicates
a glide force on the climbing dislocation equal in magni-
tude to 1/16 of the Orowan force. For an edge dislocation
of opposite Burgers vector, the glide forces are mirrored
about the line z = 0, and the climb forces are mirrored
about the line y = 0, resulting in an equivalent stress envi-
ronment. By reversing the sign of the lattice parameter mis-
match, the glide and climb forces are mirrored about the
plane z = 0. An important feature of Fig. 2 is that, due
to the elastic interactions, the effective interaction volume
of the precipitate with the dislocations is extended into
the matrix beyond the geometric volume of the precipitate.
In particular, the elastic interactions oppose dislocation
glide below z/R � 0.5 on the approach side, and above z/

R � 0.5 on the departure side.
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3. Present model

3.1. Dislocation trajectories

The M–D model [11] was revisited in the present work,
in order to consider further extensions to it. Fig. 3 is
adapted from a plot of the glide force contours in Fig. 2
to demonstrate the important features of the model and
its refinements. For clarity, the positive glide interaction
force contours are removed. Negative glide force contours
are the equilibrium trajectories of the climbing portion AB
of a positive edge dislocation bypassing the precipitate
under a constant applied shear stress syz applied along
the positive direction of the y axis. Larger applied shear
stresses result in a closer approach of the dislocation to
the precipitate, to a position where the precipitate-induced
glide force counteracts exactly the applied glide force, i.e.
where the net glide force is zero. Fig. 3 is shaded to indicate
regions where the climb component of the interaction force
is positive (assists climb over the precipitate, green) and
negative (opposes climb over the precipitate, blue). Red
(blue) arrowheads on the three dislocation trajectories
shown at the approach side of the precipitate indicate the
glide plane height z where a dislocation climbs over (under)
the precipitate, which depends on the sign of the chemical
potential of a vacancy. Eq. (3) (presented in Section 3.2)
Fig. 3. Contours of negative glide forces–expressed as fractions of the
Orowan force (calculated from Eq. (2))—acting on a positive edge
dislocation due to a coherent, misfitting Al3Sc precipitate at 300 �C. Glide
force contours are also dislocation glide/climb trajectories. Contours of
zero climb force radiate outward from the precipitate at nearly 45� from
y = 0 and z = 0, and separate regions of positive climb force (green) from
negative climb force (blue). A detailed description of the figure is given in
Section 3.1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
was used rather than Eq. (1) to determine the position at
which the sign of the vacancy chemical potential changes.

Four dislocation glide planes are drawn at the left
(approach) side of Fig. 3 as dashed horizontal lines. At
glide plane I (zo/R = 0.8), the dislocation glides toward
the precipitate (positive y direction) under an applied shear
stress equal to 1/8 of the Orowan stress (rOr/
8 = [31.3 MPa]/8 = 3.9 MPa). This glide plane is in the
top left glide force sector (yo/R < 0; zo/R > 0.5) where pre-
cipitate-induced glide forces on the dislocation are positive,
i.e. the dislocation is attracted by the precipitate by the
glide forces it induces. Then, the glide force which acts
on the dislocation is larger than the externally applied
force, i.e. the applied force and the precipitate force have
the same sign. The dislocation glide continues until, after
crossing the fOr = 0 boundary, it stops at point i at the -
fOr/8 glide force contour, at which position the glide forces
on the dislocation due to the applied stress fOr/8 and to the
precipitate (from lattice and modulus mismatch) -fOr/8 are
balanced. At point i, the negative glide force contours are
essentially compressed into a single curve. From here,
due to the repulsive interaction force of the precipitate,
the dislocation cannot glide further on the same plane,
and must climb to bypass it. The trajectory of a positively
climbing dislocation is highlighted in red in Fig. 3. Due to
the adsorption of vacancies, the dislocation climbs up over
the precipitate while gliding to remain on the -fOr/8 glide
force contour (in a clockwise direction in Fig. 3) until it
reaches point T. Here the dislocation becomes trapped,
for reasons explained in detail below.

At glide plane II (zo/R = 0), the dislocation glides
toward the precipitate as described above at plane I. In this
case, however, since the glide plane is in the lower left glide
force sector, where the precipitate-induced glide forces act
in the negative y-direction (i.e. the dislocation is repelled by
the precipitate), the net glide force on the dislocation as it
approaches the -fOr/8 glide force contour is smaller than
fOr/8. The dislocation encounters the -fOr/8 glide force con-
tour at point ii, and follows the same path to point T where
it is trapped, as described above for plane I.

At glide plane III (zo/R = �1.2), the dislocation again
glides to the -fOr/8 contour (point iii), where, because the
vacancy chemical potential is still negative, vacancies are
adsorbed, allowing the dislocation to climb up, in the
z > 0 direction. This case is distinct from glide planes I
and II, because climb over the precipitate requires that
the dislocation travels first in the negative y-direction,
against the applied shear stress, before passing point V

where the slope dz/dy of the climb trajectory is infinite.
The driving force for climb between points iii and V is pro-
vided by the climb interaction force, which is positive here.
As for cases I and II, the dislocation climbs to point T and
becomes trapped.

At glide plane IV (zo/R = �1.7) the dislocation encoun-
ters the -fOr/8 glide force contour at point iv. The sign of
the chemical potential is positive here, so the dislocation
climbs down due to vacancy emission, moving counterclock-
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wise under the precipitate until point E where the slope dz/dy

of the climb trajectory is zero. At E, therefore, the disloca-
tion is able to escape the precipitate, since by gliding past this
point along the blue horizontal dashed line that begins at E,
the dislocation moves down a gradient of glide forces pro-
vided by the mismatching precipitate, i.e. the dislocation is
repelled.

3.2. Model refinements

Two modifications were made to the M–D model in its
reimplementation. First, in the M–D model [11], the
approach angle, b = tan�1(dz/dy), was taken to be that
of a dislocation following a semicircular path of radius
equal to the precipitate radius, R. In fact, the dislocation
trajectory is more complex (Fig. 3). Eq. (1) indicates that
correct treatment of this angle, b, is important as it deter-
mines what fraction of the climb force is resolved onto
the dislocation trajectory. Furthermore, b appears in both
ð@l=@yÞABC

and in dAAB/dy; the full expressions for these
quantities are derived in Ref. [13]. Secondly, according
to Eq. (1), a negative glide force, Fg < 0, increases the
chemical potential of a vacancy lv, reducing the driving
force for dislocation climb over the precipitate. This
implies that for a unit advance dy, the dislocation requires
an energy per unit length -Fg dy, which increases lv. In
other words, adding a vacancy to the climbing dislocation
allows it to glide forward, but this glide raises the system
energy. This is an important and incorrect departure from
the treatment in the R–A model [13], in which the applied
shear stress drives the dislocation forward, reducing its
energy, and thereby reducing lv. Therefore, a more
nuanced treatment was taken here, as follows: as the dis-
location gains vacancies, it climbs from (yo, zo) to (yo,
zo + dz); thereby leaving the trajectory dictated by the
equilibrium in glide forces. At height zo + dz, it is sub-
jected to an imbalance in the net glide forces,
DFg = syzbk + Fg(zo + dz), where the externally applied
shear stress, syz, multiplied by the Burgers vector b, and
the interprecipitate distance k, is equal to -Fg(zo). The
imbalance DFg drives the dislocation forward (in the cases
I, II and IV above) or backward (in case III) by a dis-
tance dy where it rejoins the equilibrium trajectory.
Unlike the M–D model [11], the work done on the dislo-
cation by the applied shear stress is always positive when
the dislocation glides in the positive y-direction, thereby
reducing lv and aiding dislocation climb. Making the
approximation that Fg varies linearly with y, the average
glide force restoring the dislocation to its equilibrium tra-
jectory between (yo, zo + dz) and (yo + dy, zo + dz) is DFg/
2. In the present implementation, the climb increment dz

was chosen to be equal to the Burgers vector, ±b. The
resulting expression for lv becomes:

lv ¼
lmb2

2
@l
@y

� �
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ð3Þ
Whether a dislocation will climb over or under the pre-
cipitate depends on the sign of the chemical potential of a
vacancy, lv: a negative value of lv means that vacancies
will diffuse from the matrix to the dislocation, resulting
in positive climb (over the particle); a positive value of lv

corresponds to diffusion of vacancies from the dislocation
to the matrix, resulting in negative climb (under the parti-
cle). Red (blue) arrowheads on the dislocation trajectories
at the approach side of the precipitate in Fig. 3 indicate
the glide plane height where a dislocation climbs over
(under) the precipitate. It is stated in Ref [11] that for dis-
locations gliding toward the precipitate with initial height
zo > 0, bypass occurs by climb over the precipitate, while
if zo < 0, dislocations climb under. Fig. 3 indicates that this
is not generally the case.

4. Results and discussion

4.1. Dislocation trapping at the departure side

Because functioning source code for the M–D model
[11] was not available, it was rewritten entirely, in Mathem-
atica version 7.0. The model was run for a 5.9 nm radius
Al3Sc precipitate, in an attempt to reproduce the results
in Ref. [11]. Those results, however, could not be repro-
duced even when the reimplemented model was modified
to mimic the treatment of b and Fg used in Ref. [11]. In
the present code implementation, with both the previous
and the refined treatment of b and Fg, dislocation climb
over the precipitate is aided by the elastic interactions
(i.e. the climb forces due to the precipitates are positive,
in the green-shaded region of Fig. 3). Although a number
of possible explanations for this discrepancy were explored,
we are unable to account for the different results found in
the present implementation and in Ref. [11], with or with-
out the refinements on b and Fg.

In the present implementation, the dislocation behavior
was also considered at the departure side, after the dislo-
cation climbed over the precipitate to the position (yo,

zo) = (0, R). At the trapping point T, the dislocation is
impeded by the departure-side forces such that it can nei-
ther climb over nor under them. For the positive climb
trajectory, the helpful precipitate-induced climb force is
not large enough to compensate for the energy required
to produce additional dislocation length and to overcome
the externally applied glide force. For the negative climb
trajectory, the reduction in dislocation length and the
energy gained by gliding forward with the externally
applied glide force are insufficient to compensate for the
energy required to oppose the precipitate-induced climb
force. In other words, point T is a position of local equi-
librium for the dislocation. The model therefore predicts
that the dislocation, after climbing over the mismatching
precipitate by vacancy-mediated diffusion, cannot escape
the departure side by that mechanism, even though those
same interactions aid its climb at the approach side. A
creep strain rate due to dislocation climb over elastically
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interacting precipitates by vacancy diffusion cannot there-
fore be predicted by this model, contrary to Ref. [11].
Thermally activated detachment is possible, however, as
considered by Arzt and Rösler [37] for the case of a dis-
location detaching from the departure-side interface of an
incoherent dispersoid. This mechanism is not considered
in the present model, which thus represents the “ather-
mal” case.

All experimental creep studies of dilute Al–Sc–X alloys,
which contain coherent, mismatching Al3(Sc,X) precipi-
tates [4,5,23–31], report a threshold stress (at which a com-
pressive creep rate for uniaxial compressive stress is not
measurable in the laboratory) which increases with precip-
itate size and lattice parameter mismatch, as shown in
Fig. 4. In this figure, experimentally measured uniaxial
threshold stresses normalized to a calculated uniaxial Oro-
wan stress increment, are plotted as a function of precipi-
tate radius, determined by atom probe tomography. The
uniaxial Orowan stress increment is calculated as MDrc

Or

where M (equal to 3.06 for Al [38]) is the mean matrix ori-
entation factor allowing conversion from shear to uniaxial
stresses. The lattice parameter mismatch of precipitates in
the three systems is smallest in Al–Sc–Li, and largest in
Al–Sc–Yb (Table A1). These results support the hypothesis
that elastic interactions between dislocations and coherent,
misfitting precipitates are responsible for the observed
trends in threshold stress behavior for these systems. A
Fig. 4. Plot of experimental creep threshold stress data at 300 �C for Al–
Sc [4,5], Al–Sc–Yb [30,39] and Al–Li–Sc [31] alloys vs. average precipitate
radii. Straight lines are weighted best fits to the data, but forced to pass
through the origin. For the best-fit lines, the data are weighted by the
product of the uncertainties in the average precipitate radius and the
normalized threshold stress.
new mechanism to account for threshold stress behavior
due to those interactions is therefore presented below.

4.2. Glide force-based threshold stress model

4.2.1. Glide forces at the precipitate apex
The departure-side forces, as illustrated in Fig. 3 for

example, increase in magnitude with both precipitate size
and lattice parameter mismatch. For a dislocation that
has climbed over the precipitate and become trapped at
the departure side (point T in Fig. 3), a sufficiently large
applied shear stress syz will overcome the attractive depar-
ture-side forces, driving the dislocation through the region
of elastic interactions, as described below. The dislocation
then glides in the positive y-direction, on the plane indi-
cated by a blue dashed line labeled I–III in Fig. 3. As
described above, to escape the precipitate, the dislocation
must glide rather than climb, since the forces acting on
the dislocation during climb over (under) the region of
departure-side interactions do not provide the energy for
vacancy adsorption to (emission from) the dislocation.

For the example shown in Fig. 3, the normalized glide
force, Fg/fOr, for a dislocation that climbed to the apex of
the Al3Sc precipitate (zo = R + |b|, R = 5 nm) is shown as
a function of the normalized glide distance yo/R in Fig. 5.
For comparison, Fig. 5 also includes the same curve for
Al3(Sc0.8Yb0.2) and Al3(Sc0.65Li0.35) precipitates. The curve
Fig. 5. The glide force on a dislocation, normalized to the glide force from
an externally applied shear stress equal to the Orowan stress, as a function
of glide distance from (0, R + |b|) (the “apex” of the precipitate). Curves
for Al3Sc, Al3(Sc0.8Yb0.2) and Al3(Sc0.65Li0.35) precipitates are shown, and
their minima correspond to the threshold force. The curve from Al3Sc is
decomposed into its contributions from lattice parameter mismatch (label:
Al3Sc, lAl3Sc = lAl) and shear modulus mismatch (label: Al3Sc,
eAl3Sc = 0).
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for Al3Sc is decomposed into its two contributions: glide
force from lattice parameter mismatch (shorter dashes)
and from shear modulus mismatch (longer dashes). For
Al3Sc, the magnitude of the force opposing dislocation
glide is greatest at yo � 0.6R, where it has a value Fg/

fOr � �0.5. If the force on the dislocation due to the
applied shear stress exceeds this critical value (the threshold
force), the dislocation escapes the precipitate: thus, the
applied stress is equal to the threshold stress. Fig. 5 shows
that the glide forces due to shear modulus mismatch repel
the dislocation from the precipitate, while glide forces due
to lattice parameter mismatch attract the dislocation to the
precipitate. Because the effect of lattice parameter mis-
match is greater in this particular example, the net effect
is that the dislocation is attracted to the departure side of
the precipitate. The maximum glide forces needed to escape
Al3(Sc0.8Yb0.2) and Al3(Sc0.65Li0.35) precipitates are larger
and smaller, respectively, than those due to Al3Sc, in agree-
ment with the same trend in the lattice parameter mismatch
with the matrix. For values of yo/R < �0.2 , the glide force
due to Al3(Sc0.65Li0.35) precipitates is positive (the precipi-
tate repels the dislocation), because the attractive glide
force due lattice strain is smaller than the repulsive glide
force due to shear modulus mismatch. As noted above, if
the sign on the lattice parameter mismatch is reversed,
the stresses in Fig. 2 are mirrored about z = 0, which
results in identical values for the normalized glide forces
plotted in Fig. 5.

It is important to note that the departure-side threshold
force (and thus stress) predicted by these results has a dif-
ferent origin to the departure-side detachment stresses pre-
dicted by models considering the reduction in dislocation
line energy at the incoherent dispersoid–matrix interface
[8,9,19–22]. The threshold force predicted by the present
model does not consider any interaction with the coherent
precipitate–matrix interface, but only the mismatch stresses
induced in the matrix as described above.

4.2.2. Constraints on the dislocation geometry

The constraints in the present model (segment AB must
remain straight; cross-slip and bypass by Orowan looping
are not allowed) have implications on the stress required
for a dislocation to bypass a precipitate. Using a disloca-
tion dynamics model without these constraints, the behav-
ior of an edge or screw dislocation climbing over a size-
mismatched precipitate was investigated in detail by Xiang
and Srolovitz (X–S) [40]. In that work, interactions
between the dislocation and a periodic three-dimensional
array of size-mismatched spherical precipitates were simu-
lated; shear modulus-mismatch was not, however, consid-
ered. An applied shear stress caused the dislocation to
advance towards a precipitate. The dislocation glided
under the action of a low (160 MPa) or a high (640 MPa)
applied shear stress. In some cases, the dislocation was
allowed to climb as well. The glide and climb velocities
were related linearly to the glide and climb forces on the
dislocation, through glide and climb mobilities, respec-
tively, which had the ratio mc/mg = 0.1 in most cases. With
climb allowed, it was found that, at low stresses, disloca-
tions bypassed precipitates by climb, while at high stresses
they bypassed precipitates by a combination of climb,
looping and cross-slip. Climb lowered the stress at which
dislocations bypass precipitates, at both low and high
applied stresses.

Of particular relevance to the present model are the pre-
dicted configurations of dislocations climbing past size-
mismatched precipitates in the X–S model [40]. The geom-
etry relating the dislocation and precipitate are reversed
from the present case, so that positive heights (zo > 0) in
the present work correspond to negative heights (zo < 0)
in Ref. [40] (i.e. the apex of the precipitate in Fig. 2 here
is equivalent to the nadir of the precipitate in Fig. 4 of
Ref. [40]). That figure shows an equilibrium configuration
of an edge dislocation that climbed in the negative direc-
tion, to the nadir of a precipitate—equivalent to the posi-
tion (0, R) in the present work—under a low applied
stress. Although the mobilities used in the X–S model
[40] do not have a physical basis, such as the vacancy chem-
ical potential used in the present simulation, the same
behavior is found in both simulations: for low stresses,
the dislocation is unable to overcome the glide forces due
to size mismatch, which oppose its detachment from the
precipitate. Although a screw dislocation is not modeled
in the present work, in the X–S model [40] it was found
that, for the same low stress, screw dislocations do not
bypass the precipitate either, although they exhibit more
complex behavior resulting in helices surrounding the
precipitate.

The fact that three-dimensional dislocation behavior is
fully allowed for in the X–S model [40], and not in the present
simulation, has important consequences for the behavior of
a dislocation as it frees itself from the trapping point T. As is
shown in Fig. 5 of Ref. [40], when a sufficiently large stresses
was applied to a climbing edge dislocation trapped at this
position, it escaped by a combination of climb, looping
and cross-slip, leaving behind a prismatic dislocation loop
in the y–z plane (equivalent to the x–z plane in Fig. 2). This
is an example of threshold stress behavior due to dislocation
climb over an elastically interacting, size-mismatched pre-
cipitate that is not sheared. Complex dislocation motion of
this type was not modeled in the present work but if this
behavior were included in the present simulation, the applied
shear stress necessary to cause the dislocation to escape the
precipitate-interaction forces at the departure-side would
be reduced, similar to the way in which Orowan looping
reduces the stress necessary for gliding dislocations to bypass
precipitates in an overaged alloy. A final important result of
the X–S model [40] is that an edge dislocation was impeded
by a size-mismatched precipitate, even when the glide plane
did not intersect the precipitate. As described above and as
shown in Fig. 2, the present model also accounts for the fact
that the interaction forces extend out into the matrix,
increasing the effective size of the precipitate. Fig. 6 of Ref.
[40] shows a climbing edge dislocation that glides past a



Fig. 6. Right abscissa: the calculated maximum normalized dislocation
glide force (threshold force) necessary to overcome departure-side
interactions with coherent, misfitting precipitates (small triangles)
increases with precipitate radius, and with the magnitude of the mismatch.
Left abscissa: experimentally measured normalized threshold stresses
(larger circles), repeated from Fig. 4. The horizontal line represents the
prediction from the R–A model [13] without elastic interactions between
the dislocation and the precipitate.
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precipitate at a height of 1.25 R. Although the precipitate is
not directly encountered by the dislocation, the strain field in
the matrix due to the size-mismatched precipitate is still an
obstacle to it. An Orowan loop surrounds the interaction
region, whose screw segments then proceed to cross-slip
down the sides of the precipitate, leaving behind a prismatic
loop similar to that described above.

4.2.3. Comparison with experimentally measured threshold

stresses

Although the normalized (dimensionless) threshold force
values obtained in the present calculations are larger than
experimentally measured normalized (dimensionless)
threshold stresses, the maximum precipitate-induced attrac-
tive force felt by a dislocation is an increasing function of
both precipitate radius and lattice parameter mismatch, in
accord with the threshold stress behavior experimentally
measured in Al–Sc–X (X = RE, Li or TM) alloys. Fig. 6 dis-
plays the maximum glide force induced by Al3(Sc1�yXy) pre-
cipitates (i.e. the threshold force) as a function of R, at a glide
plane height zo = R + |b|, for a volume fraction of 0.0032.
Three types of precipitates are included in the plot: Al3Sc
embedded in a pure Al matrix [4,5], Al3(Sc0.8Yb0.2) in a pure
Al matrix [30,39], and Al3(Sc0.65Li0.35) in a matrix of Al–2.9
Li (at.%) [41]. Values of the lattice parameters and elastic
constants of Al–Sc, Al–Sc–Yb and Al–Li–Sc alloys are given
in the Appendix, as is a description of the methodology used
to determine them.

Model results for the normalized threshold force in
Fig. 6 bear important similarities to a plot of the experi-
mentally measured normalized threshold stress, Fig. 4,
which is superimposed on Fig. 6. In both cases the normal-
ized threshold force and stress increase nearly linearly with
R. Also, in both cases, precipitates having a larger lattice
parameter mismatch with the matrix also have larger nor-
malized stresses (forces). As described above, the geometry
of the individual precipitate, the arrangement of all precip-
itates, and the shape of the climbing dislocation are all
more complex than the model, which may account for
the larger normalized force values predicted by it.
Although the M–D model results were based on a kineti-
cally informed methodology of determining the threshold
stress [11], the same quasi-linear dependence of threshold
stress on R, increasing also with lattice parameter mis-
match, was predicted there as well.

The similarities between the dependence of threshold
forces due to misfitting precipitates, and threshold stresses
measured in creep experiments, suggest that stress-driven
departure-side escape of dislocations plays a controlling
role in the threshold stress behavior of alloys strengthened
by coherent, misfitting precipitates. This mechanism for
threshold stresses is a departure from the one explored in
the R–A and M–D models [11,13], which was due to an
applied-stress-induced increase in the driving force for the
adsorption of vacancies onto the dislocation, i.e. the mag-
nitude of the vacancy chemical potential, which enabled
appreciable rates of climb over the particle. Hence, the
present model does not account in any way for the kinetics
of dislocation climb; it is therefore not possible to compute
strain rate vs. stress curves, as was done in the R–A and
M–D models [11,13]. It is, however, possible to calculate
the force (normalized to the Orowan force) necessary to
overcome departure-side interaction stresses for coherent,
misfitting precipitates. The present model predicts normal-
ized force values close to the experimentally measured nor-
malized threshold stresses in Al–Sc–X alloys, as shown in
Fig. 6. The threshold value is over-predicted because the
dislocation shape is constrained in a way that excludes
lower-stress escape trajectories, which are predicted by
the X–S model [40].

It should be possible to bring more sophisticated tech-
niques to bear on this problem. For example, three-dimen-
sional dislocation dynamics models such as the X–S model
described above [40], or two-dimensional ones such as
those in Refs. [42,43] could be used to calculate a threshold
stress based on more realistic geometries, including spheri-
cal precipitates with spatial arrangements and size distribu-
tions derived from experiments, and complex
configurations for a dislocation propagating across a glide
plane. Such an approach would still fail to predict any
kinetic feature of creep by dislocation climb, but may pro-
vide more accurate values for the normalized threshold
stress than those presented here.

5. Summary

A model by Rösler and Arzt [13] for creep in alloys
strengthened by coherent, unshearable precipitates by
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general climb of dislocations over obstacles was extended
by Marquis and Dunand [11] to include elastic interactions
between the dislocation and the precipitate due to matrix–
precipitate mismatch in lattice parameter and shear modu-
lus. Creep threshold stresses in Al strengthened by Al3Sc
precipitates were calculated by the M–D model [11], in
semiquantitative agreement with experimental results. This
extended model is revisited in the present work. The source
code for the model was rewritten, and two inaccuracies
were corrected, yielding the following conclusions:

1. The basic result from the M–D model [11]—that elastic
interactions between dislocations and Al3Sc precipitates
result in threshold stresses due to a stress-dependent
reduction in the dislocation climb rate—could not be
reproduced. This was true whether or not the differences
between the M–D model and the present treatment [11]
were mimicked in the new code. In the present imple-
mentation, elastic interactions were found to aid disloca-
tion climb over the precipitate.

2. In the present model, the dislocation that climbs to the
apex of a precipitate by vacancy-mediated diffusion
becomes trapped close to this position by stresses
induced in the matrix by the lattice-parameter-mis-
matching precipitate. The dislocation cannot escape
the precipitate, as it can climb neither over nor under
the region of departure-side stresses. Only the applica-
tion of an externally applied stress (the threshold stress)
produces a shear force (the threshold force) that allows
for escape of the dislocation. An escape stress by a sim-
ilar mechanism has been predicted by Xiang and Srolo-
vitz using a more sophisticated dislocation dynamics
simulation [40] wherein a dislocation climbs in three
dimensions over a misfitting spherical particle. The
threshold stress modeled in the present work is distinct
from interface-related detachment stresses such as those
postulated for dislocation climb and bypass of incoher-
ent dispersoids [8,9,19–22].
Table A1
Constants used in the calculations of interaction forces between dislocations a

Property

Constrained lattice parameter mismatch [%]
Al3Sc
Al3(Sc0.8Yb0.2)
Al3(Sc0.65Li0.35)
Burgers vector [nm]
Al, Al-2.9 at.% Li
Shear modulus [GPa]
Al3Sc, Al3(Sc0.8Yb0.2)a

Al3(Sc0.65Li0.35)a

Al
Al–2.9 at.%Li
Poisson’s ratio [-]
Al3Sc, Al3(Sc0.8Yb0.2), Al3(Sc0.65Li0.35)a

Al, Al–2.9 at.%Lia

a Ambient temperature value is used.
3. The magnitude of the threshold force (normalized to the
Orowan force) necessary to effect dislocation escape
increases with the magnitude of the precipitate lattice
parameter mismatch, and with its radius R. This behav-
ior is qualitatively similar to experimental measurements
of creep threshold stresses (normalized to the Orowan
stress) in Al–Sc–X alloys and to the results presented
in Ref. [11]. Although the normalized threshold stress
(force) increases with R, the Orowan stress decreases
with R. Thus, increasing the lattice parameter mismatch
of precipitates is a better strategy for improving creep
resistance than increasing R.

4. The present model suggests that the creep threshold
stresses in alloys strengthened by coherent misfitting
precipitates may be due to the requirement that the
internal stress between dislocations and precipitates be
overcome, and not due to a requirement that a sufficient
driving force for vacancy diffusion to the climbing pre-
cipitate be supplied.
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Appendix A. lattice parameters and elastic constants of Al–

Sc, Al–Sc–Yb and Al–Li–Sc alloys

The compositions of Al3Sc, Al3(Sc, Li) and Al3(Sc, Yb)
precipitates are taken to be uniform, although in fact
nd precipitates at 300 �C.

Value Ref.

0.72 [44]
0.98 [52]
0.36 [43,45]

0.288 [44,50]

68.4 [46]
59.2 [46–48]
21.7 [50]
23.8 [48,50]

0.22 [46, 47]
0.34 [47]
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Al3(Sc0.8Yb0.2) precipitates exhibit a core–shell structure,
with a Yb-rich core and a Sc-rich shell [30,39]. The con-
strained lattice parameter mismatches are calculated at
300 �C as described in Ref. [44], taking the coefficients of
thermal expansion of precipitates and matrix to be equal
to those of Al3Sc and pure Al, respectively. For
Al3(Sc0.65Li0.35) precipitates, the lattice parameter is deter-
mined based on a first-principles calculation [45] as
described in Ref. [43], and the shear modulus is calculated
by interpolating between the shear moduli of Al3Sc [46,47]
and Al3Li [48]. The Al3(Sc0.65Li0.35) precipitate is modeled
as being embedded in an Al-2.9 Li (at.%) matrix [41],
whose lattice parameter varies negligibly due to the dis-
solved Li [49], and whose shear modulus is somewhat
increased by it [48]. The temperature dependence of the
matrix shear modulus is calculated according to Ref. [50],
while the temperature dependence of the precipitate shear
moduli, and of the matrix and precipitate Poisson’s ratios
are unknown, and thus are not accounted for. For Al3(S-
c0.8Yb0.2), the lattice parameter is determined using a
Vegard’s law dependence to interpolate between Al3Sc
[51,52] and Al3Yb [52], and the shear modulus of the pre-
cipitate is taken to be equal to that of Al3Sc. The Poisson’s
ratio for all precipitates is taken to be that of Al3Sc [46,47].
Values for the parameters used in the model are presented
in Table A1.
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